

Contents

	Introduction
	Automation with CumulusCI

	The Product Delivery Model

	Anyone Can Use CumulusCI

	Where Does CumulusCI Fit in the Toolchain?

	Why Is It Called CumulusCI?

	Learn More Through Demos

	Key Concepts
	Packages

	Projects

	Tasks and Flows

	Project Structure

	Project Orgs & Services

	Get Started
	Install CumulusCI

	Set Up SFDX

	Connect to GitHub

	Work On an Existing CumulusCI Project

	Start a New CumulusCI Project

	Convert an Existing Salesforce Project

	The cci Command Line
	Basic Operation

	List Tasks, Flows, and Plans

	Task Info and Options

	Flow Info and Options

	Plan Info and Options

	Run Tasks and Flows

	Access and Manage Orgs

	Manage Services

	Troubleshoot Errors

	Configure CumulusCI
	cumulusci.yml Structure

	Task Configurations

	Flow Configurations

	Scratch Org Configurations

	Configuration Scopes

	Advanced Configurations

	Troubleshoot Configurations

	Manage Scratch Orgs
	What Is an Org in CumulusCI?

	Set Up the Salesforce CLI

	Predefined Orgs

	Create a Scratch Org

	List Orgs

	Set a Default Org

	Open Orgs in the Browser

	Delete Scratch Orgs

	Configure Predefined Orgs

	Import an Org from the Salesforce CLI

	Use a Non-Default Dev Hub

	Connect Persistent Orgs
	The org connect Command

	Verify Your Connected Orgs

	Global Orgs

	Use a Custom Connected App

	Develop a Project
	Set Up a Dev Org

	List Changes

	Retrieve Changes

	List and Retrieve Options

	Push Changes

	Run Apex Tests

	Set Up a QA Org

	Manage Dependencies

	Use Tasks and Flows from a Different Project

	Automate Data Operations
	The Lifecycle of a Dataset

	Defining Datasets

	Custom Settings

	Dataset Tasks

	Generate Fake Data

	Acceptance Testing with Robot Framework
	Get Started

	Run Your First Test

	So Why Robot?

	The Robot Framework Advantage

	Write a Sample Robot Test Case

	Suite Setup and Teardown

	Generate Fake Data with Faker

	Create Custom Keywords

	Create a Resource File

	Create a Simple Browser Test

	Combine API Keywords and Browser Tests

	Run an Entire Test Suite

	Learn More About Robot Framework

	Continuous Integration
	CumulusCI Flow

	CumulusCI in GitHub Actions

	Other CI Systems and Servers

	Testing with Second-Generation Packaging

	Further Reading

	Release Managed and Unlocked Packages
	Release a First-Generation Managed Package

	Release a Second-Generation Managed Package

	Release an Unlocked Package

	Extend NPSP and EDA with Second-Generation Packaging

	Generate Release Notes

	Manage Push Upgrades

	Manage Unpackaged Configuration
	Roles of Unpackaged Metadata

	Unpackaged Metadata Folder Structure

	Namespace Injection

	Retrieve Unpackaged Metadata

	Customize Config Flows

	Reference
	Cheat Sheet

	Tasks Reference

	Flow Reference

	About CumulusCI
	History

	Contribute to CumulusCI

Introduction

CumulusCI helps development teams build great applications on the
Salesforce platform by automating org setup, testing, and deployment.

Automation with CumulusCI

If your product development lifecycle and release process is anything
like ours at Salesforce.org, it’s complex. You’re managing multiple
packages, dependencies, orgs, and release versions. Not to mention
managing org metadata and all the setup operations that need to run in
the right sequence, before or after a package is installed, to create a
properly configured org.

For example, Nonprofit Success Pack (NPSP) is one of Salesforce.org’s
flagship open source products. NPSP is a large, complex application with
many different components. It consists of six managed packages (five
dependencies plus itself) with multiple dependency relationships. Using
automation, all five dependent packages are deployed in the right
sequence; the unpackaged record types for the Account and Opportunity
objects are delivered; and the final configurations to make the
customers’ experience better, such as setting up Global Actions and
delivering translations, are performed. Biweekly NPSP releases are easy
for new customers to install, with all the right configuration and
without requiring end users to work through a lengthy setup guide.

The CumulusCI suite of tools is part of the not-so-secret sauce that
makes it possible for Salesforce.org to build and release products at
high volume, velocity, and quality. CumulusCI automation runs throughout
the Salesforce development lifecycle, starting from feature branches
through the delivery of the latest release.

	The CumulusCI command-line interface, cci, runs single-action
tasks and multiple-action flows for development and testing.

	MetaCI uses CumulusCI flows to build Salesforce managed packages
from GitHub repositories.

	MetaDeploy automates setup and configuration of customer orgs.

You can use the very same automation used internally by Salesforce.org
to quickly:

	Build sophisticated orgs with dependencies automatically installed.

	Load and retrieve sample datasets to make your orgs feel like a
production environment.

	Apply transformations to existing metadata to tailor orgs to your
specific requirements.

	Run builds in continuous integration systems.

	Create end-to-end browser tests and set up automation using Robot
Framework [https://robotframework.org/].

The automation defined using CumulusCI is portable. It’s stored in a
version control repository and can be run from your local command line,
from a continuous integration system, or from a customer-facing
installer. CumulusCI can run automation on scratch orgs created using
the Salesforce CLI, or on persistent orgs like sandboxes, production
orgs, and Developer Edition orgs.

Finally, by way of introduction, CumulusCI is more than just a set of
tools. It represents our holistic approach to product development.
Rather than focusing on just the Org Development
Model [https://trailhead.salesforce.com/en/content/learn/modules/org-development-model]
or the Package Development
Model [https://trailhead.salesforce.com/en/content/learn/modules/sfdx_dev_model],
Salesforce.org has implemented its own Product Delivery Model using
CumulusCI.

The Product Delivery Model

The Product Delivery Model focuses on the customer experience, not on
the technical artifacts you’re delivering. When building a product,
there are detailed technical considerations for whether an individual
component is best distributed within a package, or as additional
unpackaged metadata, or as setup automation that runs before or after a
package is installed. It’s not uncommon for managed packages that
don’t use the Product Delivery Model to require customers to perform
manual configuration steps that can take hours, or even days, to
complete. The Product Delivery Model lets teams develop configurations
directly into automated workflows, making it possible to deliver a
first-class, fully configured product to the customer.

CumulusCI automation, which makes it easy to create products that span
multiple package repositories and include complex setup operations, best
implements the Product Delivery Model, along with MetaDeploy and other
applications in the CumulusCI suite.

Anyone Can Use CumulusCI

Salesforce.org uses CumulusCI to develop products for our nonprofit and
education constituents — both public, open source products such as
NPSP and commercial managed package products developed in private GitHub
repositories. But anyone developing on the Salesforce platform can use
CumulusCI. It supports both open source and private development, and
building managed package products or org implementations.

Automation defined using CumulusCI can support all roles on a project.

	Developers can create new development environments for different
feature branches.

	Quality engineers can create test environments from feature
branches and managed package installs.

	Documentation teams can create environments to interact with new
features and retrieve screenshots.

	Product managers can create environments to interact with new
features and provide feedback on future work.

	Release engineers can create beta and final releases and push them
to subscriber orgs.

	Partners can create their own projects on top of your package.

	Customers can install the product and get set up using the same
automation steps used during development and QA.

Where Does CumulusCI Fit in the Toolchain?

Developers often ask whether CumulusCI competes with or replaces
Salesforce DX, the Salesforce command line interface (CLI) for
development, testing, and continuous integration. It doesn’t. Like
Salesforce DX, CumulusCI is designed to maintain the source of truth for
a project in a version-controlled repository, and to make it as easy as
possible to set up an org from scratch. CumulusCI uses the Salesforce
CLI to perform operations such as creating scratch orgs, and is an
alternative to bash scripts for running sequences of Salesforce CLI
commands.

CumulusCI builds on top of the commands provided by the Salesforce CLI,
and helps to manage and orchestrate them into a simple, straightforward
user experience. CumulusCI implements a complete development, test, and
release process that comes with a standard library of functionality,
while the Salesforce CLI is a lower-level toolbelt that drives
particular workflows within the overall process.

For non-developers, knowing Salesforce DX isn’t a requirement for using
CumulusCI. Neither is knowing Python, the language CumulusCI is written
in (in the same way that most Salesforce DX users don’t need to know
Node.js). If you’re going to get fancy with CumulusCI customizations,
only then does Python come in handy.

Why Is It Called CumulusCI?

Before there was the toolset known today as CumulusCI, there was a
product that would go on to become Nonprofit Success Pack (NPSP). This
product had the code name Cumulus. Early on, continuous integration (CI)
tools were created for the Cumulus product. This tooling expanded in
scope and scale to eventually become CumulusCI. Even though it’s used
for much more than CI, and for many more products than NPSP, the name
has stuck.

Learn More Through Demos

Love demos? These no-audio screencasts show how to use CumulusCI from a
command line.

Initialize a fresh CumulusCI project.

Retrieve metadata from a Salesforce org and save it in GitHub.

Manage sample or test data.

Customize flows and use CumulusCI for QA.

For a narrated demo, see Jason Lantz’s PyCon 2020
presentation [https://www.youtube.com/watch?v=XL77lRTVF3g] (00:36
through 00:54).

Key Concepts

Let’s review some important concepts when building and testing features
using CumulusCI.

Packages

CumulusCI works well with both managed package projects and org
implementations. However, packages always play a role in how projects
are built and deployed.

A package is a container for something as small as an individual
component or as large as a sophisticated application. After creating a
package, you can distribute it to other Salesforce users and
organizations, including those outside your company.

Unmanaged packages are typically used to distribute open-source
(non-proprietary) features or application templates to provide
developers with the basic building blocks for an application. After the
components are installed from an unmanaged package in a specific org,
it’s what’s known as an org implementation. These freshly installed
components can be edited by the owners of the implementation. The
developer who created and uploaded the unmanaged package has no control
over the installed components, and can’t change or upgrade them.

Managed packages are typically used by Salesforce partners to
distribute and sell applications to customers. They are proprietary code
that can be upgraded and deployed only by the developer that built them.
To ensure seamless upgrades, managed packages don’t allow certain
destructive changes, such as deleting objects or fields.

In CumulusCI, packages are built and deployed via projects.

Projects

When you work with CumulusCI, you do so inside a project. A project is
an individual Git repository that contains both Salesforce metadata and
CumulusCI automation (such as tasks and flows) that builds and releases
the project. If you are building multiple packages, we strongly
recommend organizing each package as a separate project in its own
repository.

Important

CumulusCI’s standard library assumes that there is one package per
repository, so it will work best if you follow this convention.

It’s important to note that a project doesn’t have to contain a
package. For example, a project can deliver unpackaged metadata, deliver
automation but no metadata at all, or provide test data for QA. A
project can contain the entirety of a product offered to customers, or
be just one of multiple projects that combine to form a complete
product.

To sum up, although a project doesn’t require a package, a package
requires a project to be built and deployed.

Tasks and Flows

CumulusCI uses a framework of tasks and flows to organize the
automation that is available to each project.

Tasks are units of automation. A task can perform a deployment, load a
dataset, retrieve data from an org, install a managed package, or do
many other things. CumulusCI ships with scores of tasks in its standard
library. You can run cci task list to view them all.

Popular task commands include:

	cci task list: Review the tasks available in a project.

	cci task info <name>: Learn more about a task <name> and how to
configure its options.

	cci task run <name> --org <org>: Run the task <name> against the
org <org>.

For example, the run_tests task executes Apex unit tests. If you have
an org called dev, you can run this task against it with the command
cci task run run_tests --org dev.

Many operations in CumulusCI, including creating new orgs, use flows.
Flows are ordered sequences of tasks (and even other flows!) that
produce a cohesive outcome, such as an org that’s configured to suit a
workflow like development, QA, or product demonstration.

Popular flow commands include:

	cci flow list: Review the flows available in a project.

	cci flow info <name>: Learn more about the flow <name> and the
tasks it contains.

	cci flow run <name> --org <org>: Run the flow <name> against the
org <org>.

For example, the dev_org flow sets up an org for development purposes.
If you have an org called dev, you can run this flow against it with
the command cci flow run dev_org --org dev.

Many of the most common flows you’ll work with in CumulusCI are
designed to build and configure specific orgs for you. Here’s a few of
the most common flows that build orgs.

	dev_org: This flow builds an unmanaged org designed for
development use. It’s typically used with an org whose
configuration is dev or dev_namespaced.

	qa_org: This flow builds an unmanaged org designed for testing.
It’s typically used with an org whose configuration is qa.

	install_beta: This flow builds a managed org with the latest beta
release installed, for projects that build managed packages. It’s
typically used with an org whose configuration is beta.

	install_prod: This flow builds a managed org with the latest
release installed, for projects that build managed packages.

	regression_org: This flow builds a managed org that starts with
the latest release installed and is then upgraded to the latest beta
to simulate a subscriber upgrade for projects that build managed
packages. It’s typically used with an org whose configuration is
release.

CumulusCI derives the library of tasks and flows available for any
project by combining its internal standard library with your
customizations in cumulusci.yml. Customizations can add new tasks and
flows, customize the way tasks behave, and extend, combine, and modify
flows to better suit the project’s needs. We cover customization in
depth in the Configure CumulusCI section.

Project Structure

Project Directory

The project directory is the root of your CumulusCI project. Because
each project is linked to a single GitHub repository, CumulusCI knows
which project you are working on by the current working directory of
your shell.

Tip

Avoid headaches by making sure you’re in the correct repository for
your project before running project-specific commands. Otherwise, your
project produces an error. (Check your repo first when
troubleshooting in CumulusCI and potentially save yourself an extra trip
to this guide.)

In order to be used as a CumulusCI project, a directory must both be a
Git repository and contain a cumulusci.yml configuration file. We
cover how to get set up with a new or existing CumulusCI project in the
Get Started section.

cumulusci.yml

The cumulusci.yml file defines a project’s automation. It contains
all the customizations and configurations that pertain to your
project’s lifecycle. It can encompass everything from customizing the
shapes of scratch orgs to configuring tasks and flows.

Learn more about customizing CumulusCI automation in the
Configure CumulusCI section.

force-app (or src)

The main body of the project’s code and metadata lives in the default
package directory, which is the force-app directory for Salesforce
DX-format projects and the src directory for Metadata API-format
projects. force-app defines what’s included when you release a
managed package from your CumulusCI project. (Or when you release an
unlocked package, or if you’re not releasing a package at all but
running the deploy task to get the metadata into an org in unmanaged
form.)

orgs directory

The .json files found in the orgs directory define the Salesforce DX
org configurations that are available to the project. See
Manage Scratch Orgs for
more information.

datasets

Each project can have one or more datasets: on-disk representations of
record data that can be inserted into Salesforce orgs, and that can also
be modified and re-captured during the evolution of the project.
Datasets are stored in the datasets directory. Learn more about
datasets in Automate Data Operations.

robot

Robot Framework provides browser automation for end-to-end testing. Each
project contains a robot directory, which stores the project’s Robot
Framework test suites. New projects start with a simple Robot test case
that creates a Contact record.

While Robot Framework is used primarily for automated browser testing,
it can also be harnessed to help configure orgs where other strategies
and APIs are insufficient.

See Acceptance Testing with Robot Framework for more information.

unpackaged metadata

As we touched upon earlier, a project doesn’t just encompass the
contents of a managed package or a single deployment. It also includes
unpackaged metadata: extra bundles of Salesforce metadata that further
tailor an org or complete the product.

In a CumulusCI project, all unpackaged metadata is stored in
subdirectories within the unpackaged directory. Unpackaged metadata
plays multiple roles, including preparing an org for installing
packages, adding more customization after the package or application is
deployed, and customizing specific orgs that are used in the product’s
development process.

Learn more in the
Manage Unpackaged Configuration section.

Project Orgs & Services

Orgs and services are external, authenticated resources that each
project uses. CumulusCI makes it easy to connect orgs and services to a
single project, or to use them across many projects.

Orgs

Each project has its own set of orgs, including active scratch orgs,
persistent orgs like a production or packaging org, and predefined
scratch org configurations. CumulusCI securely stores org authentication
information in its keychain, making it easy to access connected orgs at
any time. The cci org list command shows all of the orgs connected to
a project. Orgs can also be shared across multiple projects.

Configuring orgs in CumulusCI is powerful, but comes with some
complexity. For details, see Manage Scratch Orgs and
Connect Persistent Orgs.

Services

Services represent external resources used by CumulusCI automation, such
as access to a GitHub account or a MetaDeploy instance. Services are
usually, but not always, connected to CumulusCI across projects as part
of the global keychain. The command cci service list shows you which
services are connected in the context of the current project.

Global services are easy to use and share. We recommend that you use
them as much as possible. However, services can also be connected at the
project level, which means that they’re scoped to a single project and
cannot be shared.

For more information on configuring services via the cci command line
see the Manage Services section.

Get Started

Install CumulusCI

Tip

These installation instructions assume some familiarity with entering
commands into a terminal. If that’s completely new to you, we recommend
visiting the CumulusCI
Setup [https://trailhead.salesforce.com/content/learn/modules/cumulusci-setup]
module on Trailhead for a step-by-step walkthrough.

On macOS

Homebrew [https://brew.sh/] is a prerequisite for installing CumulusCI
on macOS. Follow the instructions on the Homebrew website to install
Homebrew before continuing.

Install via pipx

pipx ensures that CumulusCI and its dependencies are installed into
their own Python environment separate from other Python software on your
computer. We cannot recommend it enough!

First, install pipx with these commands:

$ brew install pipx
$ pipx ensurepath

After pipx installs, install CumulusCI:

$ pipx install cumulusci

When finished, verify your installation.

On Linux

Install via pipx

pipx ensures that CumulusCI and its dependencies are installed into
their own Python environment separate from other Python software on your
computer. We cannot recommend it enough!

Installation instructions for pipx can be found
here [https://pipxproject.github.io/pipx/installation/].

After pipx installs, install CumulusCI:

$ pipx install cumulusci

When finished, verify your installation.

On Windows

Install Python 3

	Go to the Python downloads
page [https://www.python.org/downloads/windows/].

	Download the latest Python 3.9 release. Most users select the
“Windows Installer (64-bit)” link, but it depends on your
particular computer setup.

	Install using the installation wizard.

	Select Add Python <version> to PATH.

	Click “Install Now”.

[image: image]

	On the screen entitled “Setup was successful,” click the “Disable
path length limit” button (if it’s present).

[image: image]

Install via pipx

pipx ensures that CumulusCI and its dependencies are installed into
their own Python environment separate from other Python software on your
computer. We cannot recommend it enough!

Open your preferred terminal application (such as
cmd.exe [https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cmd]
on Windows). If your terminal is already open, close it and reopen it.
Enter this command:

$ python -m pip install --user pipx

[image: image]

To permanently modify the default environment variables:

	Click Start and search for edit environment variables, or open
System properties and click Advanced system settings.

	Click the Environment Variables button.

	To change System variables, you need non-restricted access
(administrator rights) to your machine. Add these paths to your PATH
environment variable:

	%USERPROFILE%\.local\bin

	%USERPROFILE%\AppData\Roaming\Python\Python38\Scripts

[image: image]

Note

Be precise when entering these paths. Add them at the very end of the
Variable Value already in place. Separate each path by a semicolon (;)
with no space between path names.

Open a new command prompt and verify that pipx is available:

pipx --version

Look for a version number after entering this command, such as:
0.12.3.1.

If you get an error instead, such as
'pipx' is not recognized as an internal or external command, operable program or batch file.,
confirm that your environment variables have been updated.

Finally, install CumulusCI with this command:

pipx install cumulusci

When finished, verify your installation.

Verify Your Installation

In a new terminal window, verify that CumulusCI installed correctly by
running cci version.

$ cci version
CumulusCI version: 3.29.0 (/path/to/bin/cci)
Python version: 3.8.5 (/path/to/bin/python)

You have the latest version of CumulusCI.

You can also use this command to check whether your CumulusCI
installation is up to date.

Still need help? Feel free to submit a question on our Trailblazer
community
group [https://trailblazers.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F9300000009M9ZCAU].

Set Up SFDX

Scratch orgs created by Salesforce DX allow teams to work efficiently in
individual, fully-configured environments that are easy to create and
destroy. We recommend working with scratch orgs throughout the
development process.

To set up Salesforce DX:

	Install Salesforce
CLI [https://developer.salesforce.com/docs/atlas.en-us.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm]

	Enable Dev Hub Features in Your
Org [https://developer.salesforce.com/docs/atlas.en-us.228.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_devhub.htm]

	Connect SFDX to Your Dev Hub
Org [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm] -
Be sure to use the --setdefaultdevhubusername option!

If you have the sfdx command installed, are connected to your Dev Hub,
and set the defaultdevhubusername config setting (use
sfdx force:config:list to verify), you’re now ready to use cci with
sfdx to build scratch orgs.

Important

SFDX supports multiple Dev Hubs, so CumulusCI uses the one set as
defaultdevhubusername when creating scratch orgs.

Tip

For a detailed introduction on how to set up Salesforce CLI and Visual
Studio Code to work with CumulusCI, review the Build Applications with
CumulusCI [https://trailhead.salesforce.com/en/content/learn/trails/build-applications-with-cumulusci]
module on Trailhead.

Learn more about Salesforce DX at
https://developer.salesforce.com/platform/dx.

Connect to GitHub

In order to allow CumulusCI to work with your repositories in GitHub,
connect GitHub as a service in cci. Simply run:

$ cci service connect github mygithub

to open a browser and authenticate with your GitHub account using the
one-time code shown by the CLI. Verify the GitHub service is connected
by running cci service list:

[image: image]

After you’ve configured the github service, it’s available to all
CumulusCI projects.

Note

If your GitHub organization has enabled OAuth App access restrictions,
CumulusCI will not be able to access organization repositories until it
has been approved by an
owner [https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-user-account/managing-your-membership-in-organizations/requesting-organization-approval-for-oauth-apps].
You can use a personal access token instead.

Alternatively, you may create a new personal access
token [https://github.com/settings/tokens/new] with both repo and
gist scopes specified. (Scopes appear as checkboxes when creating
the personal access token in GitHub.) Copy the access token to use when
configuring the GitHub service.

Next, run the following command and provide your GitHub username and
access token:

$ cci service connect github mygithub --username $GITHUB_USERNAME --token $GITHUB_TOKEN

Services are stored in the global CumulusCI keychain by default.

Work On an Existing CumulusCI Project

If you’d like to work on an existing CumulusCI project on GitHub, these
are the prerequisites.

	Install CumulusCI

	Install
Git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]

	Clone the Project’s GitHub
Repository [https://docs.github.com/en/free-pro-team@latest/desktop/contributing-and-collaborating-using-github-desktop/adding-and-cloning-repositories]

Note

CumulusCI does not support projects stored on other Git hosts such as
BitBucket or GitLab at this time.

You can change directories into the project’s root directory and begin
executing cci commands.

For example, cci project info shows information about the project:

$ cd cumulusci-test

$ cci project info
name: CumulusCI Test
package:
 name: CumulusCI Test
 name_managed: None
 namespace: ccitest
 install_class: None
 uninstall_class: None
 api_version: 33.0
git:
 default_branch: main
 prefix_feature: feature/
 prefix_beta: beta/
 prefix_release: release/
 release_notes:
 parsers:
 1:
 class_path: cumulusci.tasks.release_notes.parser.GithubLinesParser
 title: Critical Changes
 2:
 class_path: cumulusci.tasks.release_notes.parser.GithubLinesParser
 title: Changes
 3:
 class_path: cumulusci.tasks.release_notes.parser.GithubIssuesParser
 title: Issues Closed
 4:
 class_path: cumulusci.tasks.release_notes.parser.GithubLinesParser
 title: New Metadata
 5:
 class_path: cumulusci.tasks.release_notes.parser.GithubLinesParser
 title: Deleted Metadata
 repo_url: https://github.com/SFDO-Tooling/CumulusCI-Test
test:
 name_match: %_TEST%

Start a New CumulusCI Project

If you’d like to start a new CumulusCI project, these are the
prerequisites.

	Install CumulusCI

	Install
Git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]

	Install the Salesforce
CLI [https://developer.salesforce.com/tools/sfdxcli]

Run the following commands to create a directory with your project’s
name, navigate to said directory, and initialize it as a Git repository:

$ mkdir cci_project
$ cd cci_project
$ git init

Then, initialize the project as a CumulusCI project.

Project Initialization

Use the cci project init command within a Git repository to generate
the initial version of a project’s cumulusci.yml file. CumulusCI
creates a customized cumulusci.yml file by first asking questions
about your project.

	Prompt

	What’s it for?

	Project Info

	The name is usually the same as your repository name.NOTE: Do not use spaces in the project name.

 The cci Command Line

The cci Command Line

Basic Operation

Tip

If you’re new to working with command line interfaces, the Install
Visual Studio
Code [https://trailhead.salesforce.com/content/learn/modules/cumulusci-setup/review-base-requirements-install-visual-studio-code?trail_id=build-applications-with-cumulusci]
Trailhead module covers installing and opening a terminal window in
Visual Studio Code.

After installing CumulusCI, use the cci command in your terminal or command prompt to
interact with it.

On any platform, you can use the integrated terminal in Visual Studio
Code. Alternately, on macOS, access the terminal via Terminal.app; on
Windows, open cmd.exe; or on Linux, use your preferred terminal
application.

To see all available commands, type cci in your terminal.

$ cci
Usage: cci [OPTIONS] COMMAND [ARGS]...

Options:
--help Show this message and exit.

Commands:
error Get or share information about an error
flow Commands for finding and running flows for a project
org Commands for connecting and interacting with Salesforce orgs
plan Commands for getting information about MetaDeploy plans
project Commands for interacting with project repository configurations
service Commands for connecting services to the keychain
shell Drop into a Python shell
task Commands for finding and running tasks for a project
version Print the current version of CumulusCI

To retrieve information on a specific command, type cci <command>.

Let’s examine the cci task command:

$ cci task
Usage: cci task [OPTIONS] COMMAND [ARGS]...

Commands for finding and running tasks for a project

Options:
--help Show this message and exit.

Commands:
doc Exports RST format documentation for all tasks
info Displays information for a task
list List available tasks for the current context
run Runs a task

We can see that the cci task command has many useful subcommands, such
as cci task info.

List Tasks, Flows, and Plans

CumulusCI ships with many standard tasks and flows. In addition, your
project might have one or more MetaDeploy plans. The following commands
list all available tasks, flows, and plans for a project:

$ cci task list
$ cci flow list
$ cci plan list

The tasks, flows, and plans listed are specific to the project directory
that you’re in when you run the command. For example, if you have a
custom flow defined in your cumulusci.yml file for Project A, it will
only be listed if you run cci flow list in Project A’s root
directory.

The tasks and flows are listed by their group attribute as specified
in the cumulusci.yml file. It’s easy to edit these groups as you see
fit. Any modifications will be reflected in the list commands.

Task Info and Options

For additional information on task <name>, run either command:

$ cci task info <name>
$ cci task run <name> --help

Information about specific tasks includes:

	A description of the task.

	The Python class associated with this task.

	The syntax for running the command.

	Any options accepted or required by the task.

Each option available for a given task also lists:

	The syntax for the option (--<name> value).

	Whether the option is required or optional.

	A description of the option.

Let’s examine the util_sleep task:

$ cci task info util_sleep
util_sleep

Description: Sleeps for N seconds

Class: cumulusci.tasks.util.Sleep

Command Syntax

 $ cci task run util_sleep

Options

 --seconds SECONDS
 Required
 The number of seconds to sleep
 Default: 5

Flow Info and Options

For additional information on flow <name>, run either command:

$ cci flow info <name>
$ cci flow run --help

Information about specific flows includes:

	A description of the flow.

	The ordered steps (and substeps) of a flow.

For example, listing the info for the dev_org flow shows that it’s
composed of three subflows: dependencies, deploy_unmanaged, and
config_dev, and one task: snapshot_changes. The tasks and flows
making up the three subflows are also listed.

$ cci flow info dev_org
Description: Set up an org as a development environment for unmanaged metadata
1) flow: dependencies [from current folder]
 1) task: update_dependencies
 2) task: deploy_pre
2) flow: deploy_unmanaged
 0) task: dx_convert_from
 when: project_config.project__source_format == "sfdx" and not org_config.scratch
 1) task: unschedule_apex
 2) task: update_package_xml
 when: project_config.project__source_format != "sfdx" or not org_config.scratch
 3) task: deploy
 when: project_config.project__source_format != "sfdx" or not org_config.scratch
 3.1) task: dx_push
 when: project_config.project__source_format == "sfdx" and org_config.scratch
 4) task: uninstall_packaged_incremental
 when: project_config.project__source_format != "sfdx" or not org_config.scratch
3) flow: config_dev
 1) task: deploy_post
 2) task: update_admin_profile
4) task: snapshot_changes

Plan Info and Options

Your project may have one or more defined MetaDeploy plans, though none
come preconfigured with CumulusCI. If you have plans, for additional
information on plan <name>, run the following command:

$ cci plan info <name>

Information about specific plans includes:

	Configuration settings (slug, tier, etc)

	Messages

	Plan preflight checks

	Step preflight checks

	An ordered list of steps

By default all of the above information is displayed. You can display
only the list of messages by using the command line option --messages

The following example shows the output of a typical plan, in this case a
plan named ‘config’.

$ cci plan info config
 Config

 Key Value
 ──────────────────────
 YAML Key config
 Slug config
 Tier secondary
 Hidden? No

 Messages

 Type Message
 ──
 Title Express Setup Configuration Plan
 Preflight This will install metadata configurations into your org.
 Post-install Thanks for installing Advisor Link. Visit the Trailblazer Community
 for any questions about Advisor Link.
 Error If you experience an issue with the installation, please post
 in the Trailblazer Community.

 Plan Preflights

 Action Message When
 ──
 error My Domain must be enabled in '.my.' not in
 your org before installation. org_config.instance_url
 error Chatter must be enabled in your not
 org before installation. tasks.check_chatter_enabled()
 error Enhanced Notes must be enabled not
 in your org before installation. tasks.check_enhanced_notes_enab…

 Step Preflights

 Step Action Message When
 ──
 4 skip 'PID_Customer_Community_Plus' not in
 tasks.get_available_licenses()
 5 skip 'PID_Customer_Community_Plus_Login' not in
 tasks.get_available_licenses()

 Steps

 Step Name Required Recommended
 ──
 1 Express Setup - Additional Unpackaged No Yes
 Metadata
 2 Express Setup - Sample Reports and No Yes
 Dashboards
 3 Express Setup - Lightning App and Advisor No Yes
 Profile
 4 Express Setup - Advisee Profile No Yes
 5 Express Setup - Advisee Portal Profile No Yes
 6 Express Setup - Permission Sets No Yes
 7 Express Setup - Advisor Sharing Metadata No Yes

Run Tasks and Flows

Execute a specific task or flow with the run command.

$ cci task run <name> --org <org> [options]
$ cci flow run <name> --org <org> [options]

This command runs the task or flow <name> against the org <org>.

Tip

You can see a list of available orgs by running cci org list.

For example, the run_tests task executes Apex unit tests in a given
org. Assuming there exists an org named dev, you can run this task
against it with the command cci task run run_tests --org dev.

Get Help Running Tasks

If you’re not certain about what a specific command does, use the
--help flag to get more information.

$ cci task info <name> --help

When the --help flag is specified for a command, the output includes:

	A usage statement featuring the syntax that executes the command.

	A description of the command.

	The list of available options for use with the command.

$ cci task --help
Usage: cci task [OPTIONS] COMMAND [ARGS]...

Options:
--help Show this message and exit.

Commands:
doc Exports RST format documentation for all tasks
info Displays information for a task
list List available tasks for the current context
run Runs a task

If you’re just getting started with CumulusCI and aren’t sure which of
the many tasks and flows to use, don’t worry. We show you specific
tasks and flows in later sections of the documentation.

Specify Task Options When Running Flows

When executing a flow with cci flow run, you can specify options on
specific tasks in the flow with the following syntax:

$ cci flow run <flow_name> -o <task_name>__<option_name> <value>

<flow_name> is the name of the flow to execute, <task_name> is the
name of the task you wish to specify an option for, <option_name> is
the option on the task you want to specify, and <value> is the actual
value you want to assign to the task option.

For example, in the above output from cci flow info dev_org if we
wanted to set the allow_newer option on the update_dependencies to
True, we would use the following:

$ cci flow run dev_org --org dev -o update_dependencies__allow_newer True

Note

If the specified task executes more than once in the flow, it uses the
given option value each time it executes.

If you want to configure specific task options on flows without
explicitly listing them see
Configure Options on Tasks in Flows.

Access and Manage Orgs

CumulusCI makes it easy to create, connect, and manage orgs. The
cci org top-level command helps you work with orgs.

To learn about working with orgs in detail, read
(scratch-orgs) and
(connected-orgs).

Manage Services

Services represent external resources used by CumulusCI automation, such
as access to a GitHub account or a MetaDeploy instance.

List Services

You can have CumulusCI show you a list of all possible services
supported. Services that are not currently configured will be displayed
in a dimmed row.

$ cci service list

Connect A Service

To connect a service to the global keychain (which we recommend for
almost all situations) you can use:

$ cci service connect <service_type> <service_name>

If you wanted to connect to your personal GitHub account as a service
you could use:

$ cci service connect github personal

CumulusCI will prompt you for the required information for the given
service type.

If you want a service to onlye be available to a given project you can
pass the --project flag.

$ cci service connect <service_type> <service_name> --project

Set a Default Service

The first service connected for a given service type is automatically
set as the default service for that type. If you have multiple services
connected for a given type and would like to set a new default use:

$ cci service default <service_type> <service_name>

Rename a Service

To rename a service use:

$ cci service rename <service_type> <old_name> <new_name>

Remove a Service

To remove a service use:

$ cci service remove <service_type> <service_name>

Troubleshoot Errors

Errors happen! That’s why cci provides tools to extract error details
so that they can be reported and triaged.

Report Error Logs

The cci error gist command sends the most recent log file to a GitHub
gist [https://docs.github.com/en/github/writing-on-github/creating-gists]
so you can quickly and easily share logs with others. For this feature
to work you need to make sure that your GitHub service is set up with
the proper
scopes [https://cumu:lusci.readthedocs.io/en/latest/tutorial.html#github-service].

The gist includes:

	The current version of cci

	The current Python version

	The path to the Python executable

	sysname of the host (such as Darwin)

	The machine name of the host (such as x86_64)

	The most recent log file (cci.log) that CumulusCI has created.

The URL for the gist is displayed in the terminal as output, and a web
browser automatically opens a tab to the gist.

View Stack Traces

If you encounter an error and want more information on what caused it,
the cci error info command displays the stack trace (if present) from
the last command executed in CumulusCI.

Note

The stack trace displayed is a Python stacktrace. This is helpful for
locating where CumulusCI encountered an error in the source code.

See Stack Traces Automatically

If you’d like to investigate bugs in CumulusCI, set the config option
show_stacktraces to True under the cli section of
~/.cumulusci/cumulusci.yml. It turns off suppression of stack traces.

Usage errors (such as incorrect command line arguments, missing files,
and so on) don’t show exception tracebacks because they are seldom
helpful in that case.

For help with troubleshooting errors or stack traces, reach out to the
CumulusCI team on the CumulusCI Trailblazer Community
Group [https://trailblazers.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F9300000009M9Z].

The --debug Flag

All CumulusCI commands can be passed the --debug flag, so that:

	Any calls to CumulusCI’s logger at the debug level are shown.

	Outgoing HTTP requests are logged.

	If an error is present, the corresponding stack trace is shown, and
the user is dropped into a post-mortem
debugging [https://docs.python.org/3/library/pdb.html#pdb.post_mortem]
session.

Note

To exit a debugging session, type the command quit or exit.

Log Files

CumulusCI creates a log file every time a cci command runs. There are
six rotating log files (cci.log, cci.log1...5) with cci.log being
the most recent. Log files are stored under ~/.cumulusci/logs for Mac
and Linux users, and C:\Users\<Your User>\.cumulusci\logs for Windows
users.

By default, log files document:

	The last command that was entered by the user.

	All output from the command (including debug information).

	If a Python-level exception occurs, the corresponding stack trace.

If you want debug information regarding HTTP calls made during
execution, you must explicitly run the command with the --debug flag
set.

$ cci task run <name> --org <org> --debug
$ cci flow run <name> --org <org> --debug

 Configure CumulusCI

Configure CumulusCI

The cumulusci.yml file is located in the project root directory. This
is where you define project dependencies, configure new tasks and flows,
customize standard tasks and flows for your project, and so much more!

cumulusci.yml Structure

A cumulusci.yml file contains these top-level sections.

	project: Contains information about the project’s associated
package (if any) and GitHub repository. This section is largely
generated by running cci project init.

If you need custom markup that’s unique to your project, you can
store it in a section called custom under project.

	tasks: Defines the tasks that are available to run in your
project. See Task Configurations for
configuration options in this section.

	flows: Defines the flows that are available to run in your
project. See Flow Configurations for
configuration options in this section.

	sources: Defines other CumulusCI projects whose tasks and flows
you can use in automation. See
Tasks and Flows from a Different Project for more information.

	orgs: Defines the scratch org configurations that are available
for your project. See Scratch Org Configurations for configuration
options in this section.

	plans: Contains any custom plans defined to install your project
into a customer org. See the metadeploy_publish task for more
information.

Task Configurations

Each task configuration under the tasks section of your
cumulusci.yml file defines a task that can be run using the
cci task run command, or included in a flow step. With a few simple
changes to this section, you can configure build automation
functionality to suit your project’s specific needs.

Override a Task Option

If you repeatedly specify the same value for an option while running a
task, you can configure CumulusCI to use that value as a default value.

For example: Let’s enforce a 90% code coverage requirement for Apex
code in your project. The run_tests task, which executes all Apex
tests in a target org, can enforce code coverage at a given percentage
by passing the --required_org_code_coverage_percent option.

run_tests:
 options:
 required_org_code_coverage_percent: 90

When the tasks section of the cumulusci.yml file specifies this
option, CumulusCI overrides the default option with a value of 90.
Whenever this task is executed, its customized options apply, unless
it’s further configured for a particular flow step.

Verify the change by looking for a default option value when running
cci task info <name>.

$ cci task info run_tests
run_tests

Description: Runs all apex tests

Class: cumulusci.tasks.apex.testrunner.RunApexTests

Command Syntax

 $ cci task run run_tests

Options
 .
 .
 .
 -o required_org_code_coverage_percent PERCENTAGE
 Optional
 Require at least X percent code coverage across the org following the test run.
 Default: 90

Add a Custom Task

To define a new task for your project, add the task name under the
tasks section of your cumulusci.yml file.

For example, let’s create a custom task named deploy_reports that
deploys a set of reports stored in your project’s unpackaged metadata
located in unpackaged/config/reports.

First, look up the Python class associated with the standard task
deploy. From there we see that the deploy task has a class_path
value of cumulusci.tasks.salesforce.Deploy.

Store the task under the tasks section of the cumulusci.yml file.

deploy_reports:
 description: Deploy Reports
 class_path: cumulusci.tasks.salesforce.Deploy
 group: projectName
 options:
 path: unpackaged/config/reports

Tip

Be sure to include the value we retrieved for class_path. Also,
consider adding a common group attribute to make it easier to see the
tasks specific to your project when running cci task list.

Congratulations! You created a new custom task in CumulusCI.

If you’ve built a custom task in Python, you can make it available to
the project by adding the task under the tasks section of the
cumulusci.yml file. (Let’s assume that your task’s class is named
MyNewTaskClassName and exists in the file tasks/task_file.py.)

tasks:
 my_new_task:
 description: Description of the task
 class_path: tasks.task_file.MyNewTaskClassName
 group: projectName

Use Variables for Task Options

To reference a project configuration value within the tasks section of
the cumulusci.yml file, use the $project_config variable.

For example, NPSP uses a variable for the project’s namespace by
setting a value of $project_config.project__package__namespace. This
variable is then referenced in the project’s custom deploy_qa_config
task where it’s passed as the value for the namespace_inject option.

Tip

A double underscore (__) refers to a subsequent level in the
cumulusci.yml file.

deploy_qa_config:
 description: Deploys additional fields used for QA purposes only
 class_path: cumulusci.tasks.salesforce.Deploy
 group: Salesforce Metadata
 options:
 path: unpackaged/config/qa
 namespace_inject: $project_config.project__package__namespace

In this instance, CumulusCI replaces the variable with the value under
project -> package -> namespace in the cumulusci.yml file. Here is
the project section of NPSP’s cumulusci.yml file specifying npsp
as the namespace value.

project:
 name: Cumulus
 package:
 name: Cumulus
 name_managed: Nonprofit Success Pack
 namespace: npsp
 api_version: 48.0
 install_class: STG_InstallScript
 uninstall_class: STG_UninstallScript

Flow Configurations

Each flow configuration listed under the flows section of your
cumulusci.yml file defines a flow that can be run using the
cci flow run command, or included as a step in another flow. With a
few simple changes to this section, you can configure sophisticated
build automation that execute workflows throughout your development
lifecycle.

Add a Custom Flow

To define a new flow for your project, add the flow name under the
flows section of your cumulusci.yml file. Let’s define a new
greet_and_sleep flow:

greet_and_sleep:
 group: projectName
 description: Greets the user and then sleeps for 5 seconds.
 steps:
 1:
 task: command
 options:
 command: echo 'Hello there!'
 2:
 task: util_sleep

This flow is comprised of two tasks: command greets the user by
echoing a string, and util_sleep then tells CumulusCI to sleep for
five seconds.

You can reference how flows are defined in the universal
cumulusci.yml [https://github.com/SFDO-Tooling/CumulusCI/blob/master/cumulusci/cumulusci.yml]
file.

Add a Flow Step

To add a step to a flow, first run cci flow info <name> to see the
existing steps. In the following example we run this for the dev_org
flow.

$ cci flow info dev_org
Description: Set up an org as a development environment for unmanaged metadata
1) flow: dependencies [from current folder]
 1) task: update_dependencies
 2) task: deploy_pre
2) flow: deploy_unmanaged
 0) task: dx_convert_from
 when: project_config.project__source_format == "sfdx" and not org_config.scratch
 1) task: unschedule_apex
 2) task: update_package_xml
 when: project_config.project__source_format != "sfdx" or not org_config.scratch
 3) task: deploy
 when: project_config.project__source_format != "sfdx" or not org_config.scratch
 3.1) task: dx_push
 when: project_config.project__source_format == "sfdx" and org_config.scratch
 4) task: uninstall_packaged_incremental
 when: project_config.project__source_format != "sfdx" or not org_config.scratch
3) flow: config_dev
 1) task: deploy_post
 2) task: update_admin_profile
4) task: snapshot_changes

Of this flow’s four steps, the first three are themselves flows, and
the last is a task.

All non-negative numbers and decimals are valid as step numbers in a
flow. You can add steps before, between, or after existing flow steps.

The following shows examples of values that you would use for the
various scenarios:

	Add a step before step 1 by inserting a step number greater than
or equal to zero and less than 1 (such as 0, 0.3, or even 0.89334).

	Add a step between steps 2 and 3 by inserting a step number
greater than 2 or less than 3.

	Add a step after all steps in the flow by inserting a step number
greater than 4.

You could also customize the dev_org flow to output an additional log
line as its final step:

dev_org:
 steps:
 5:
 task: log
 options:
 line: dev_org flow has completed

Skip a Flow Step

To skip a flow step, set the task or flow for that step number to the
value of None.

For example, to skip the fourth step of the dev_org flow, insert this
code under the flows section of your cumulusci.yml file.

dev_org:
 steps:
 4:
 task: None

Important

The key task must be used when skipping a flow step that is a task.
The key flow must be used when skipping a flow step that corresponds
to a flow.

When CumulusCI detects a task or flow with a value of None, the task
or flow is skipped.

[image: image]

Replace a Flow Step

Replacing a flow step is easy; just note the name of the flow, step
number, and task or flow you would like to run on the given step.

For example, to replace the default fourth step of the dev_org flow
with a custom task that loads data into a dev environment, specify the
custom task to run instead.

dev_org:
 steps:
 4:
 task: load_data_dev

Configure Options on Tasks in Flows

Specify options on specific tasks in a flow with this syntax:

<flow_to_modify>:
 steps:
 <step_number>:
 flow: <sub_flow_name>
 options:
 <task>:
 <option_name>: <value>

Replace all objects with <> with the desired values.

For example, let’s examine the definition of the ci_master flow from
the universal cumulusci.yml file.

ci_master:
 group: Continuous Integration
 description: Deploy the package metadata to the packaging org and prepare for managed package version upload. Intended for use against main branch commits.
 steps:
 1:
 flow: dependencies
 options:
 update_dependencies:
 resolution_strategy: production
 2:
 flow: deploy_packaging
 3:
 flow: config_packaging

This flow specifies that when the subflow dependencies runs, the
resolution_strategy option has a value of production for the
update_dependencies task (which itself executes in the dependencies
subflow).

when Clauses

Specify a when clause in a flow step to conditionally run that step. A
when clause is written in a Pythonic syntax that should evaluate to a
boolean (True or False) result.

You can use the project_config object to reference values from the
cumulusci.yml file to help with creation of the when clause’s
condition. You can use the double underscore (__) syntax to indicate
values at subsequent levels of the file. For example, you can reference
a project’s namespace with
project_config.project__package__namespace.

You can also reference values on the org_config object in when
clauses. For example, it’s common to reference org_config.scratch
when building automation that needs to behave differently in a scratch
org and a persistent org.

when clauses are frequently used in CumulusCI’s standard library to
conditionally run a step in a flow based on the source code format of
the project. Below is the configuration for the standard library flow
build_feature_test_package. The update_package_xml task will execute
only if the project’s source code format is not equal to “sfdx”.

build_feature_test_package:
 group: Release Operations
 description: Create a 2gp managed package version
 steps:
 1:
 task: update_package_xml
 when: project_config.project__source_format != "sfdx"
 2:
 task: create_package_version
 options:
 package_type: Managed
 package_name: $project_config.project__package__name Managed Feature Test
 version_base: latest_github_release
 version_type: minor
 skip_validation: True

See Use Variables for Task Options
for more information.

Tasks and Flows from a Different Project

It’s also possible to use tasks and flows from another project with
CumulusCI. The other project must be named under the sources section
of the project cumulusci.yml file.

For example, when tasks or flows are referenced using the npsp
namespace, CumulusCI fetches the source from the NPSP GitHub repository.

sources:
 npsp:
 github: https://github.com/SalesforceFoundation/NPSP

By default, CumulusCI uses the resolution strategy production, which
will fetch the most recent production release, or the default branch if
there are no releases. By specifying resolution_strategy, the behavior
can be changed to match desired dependency resolution behavior, such as
using beta releases or retrieving feature test packages from a commit
status. See for
more details about resolution strategies.

Note

This feature requires that the referenced repository be readable (for
example, it’s public, or CumulusCI’s GitHub service is configured with
the token of a user who has read access to it).

It’s also possible to fetch a specific tag or release, where release is one of latest, previous, or latest_beta. For example:

sources:
 eda:
 github: https://github.com/SalesforceFoundation/EDA
 release: latest
 npsp:
 github: https://github.com/SalesforceFoundation/NPSP
 tag: rel/3.163

You can also select a specific commit or branch. We recommend that most projects, however, use a resolution strategy.

When the repo is listed under sources, it’s possible to run a task
from NPSP…

$ cci task run npsp:robot

Or a flow…

$ cci flow run npsp:install_prod

Or even create a new flow that uses a flow from NPSP:

flows:
 install_npsp:
 steps:
 1:
 flow: npsp:install_prod
 2:
 flow: dev_org

This flow uses NPSP’s install_prod flow to install NPSP as a managed
package, and then run this project’s own dev_org flow.

Scratch Org Configurations

This section defines the scratch org configurations that are available
without explicitly running cci org scratch to create a new
configuration. For more information on using scratch orgs with
CumulusCI, see Manage Scratch Orgs.

Override Default Values

Note

These overrides pertain only to scratch orgs.

You can override these values for your org.

	days (integer): Number of days for the scratch org to persist.

	namespaced (boolean): Is the scratch org namespaced or not.
Applies only to managed package projects.

	config_file (string): Path to the org definition file to use when
building the scratch org.

orgs:
 scratch:
 <org_name>:
 <key>: <value>

Replace all objects with <> with the desired values.

For example, override the default number of days from 7 to 15 in the
dev org.

orgs:
 dev:
 days: 15

Configuration Scopes

CumulusCI merges multiple YAML [https://yaml.org/] files that enable
configuration at several distinct scopes. All of these files have the
same name, cumulusci.yml, but live in different locations in the file
system.

You can configure files at these scope levels: Project, Local
Project and Global. Configurations have an order of override
precedence (from highest to lowest):

	Project

	Local Project

	Global

One override only cascades over another when two configurations set a
value for the same element on a task or flow.

Take for example, task T which takes two options, opt1 and opt2.

You can specify a default value for opt1 in your project
cumulusci.yml file and a default value for opt2 in your global
cumulusci.yml file, and you’ll see the expected result: both values
are available in the project. (The default of opt1 is not exposed to
other projects.)

If you change your project cumulusci.yml file to also specify a
default value for opt2, this new default opt2 value takes precedence
over the default opt2 value specified in your global cumulusci.yml
file.

Project Configurations

macOS/Linux: .../path/to/project/cumulusci.yml

Windows: ...\path\to\project\cumulusci.yml

This cumulusci.yml file lives in the project root directory and
applies solely to this project. Changes here are committed back to a
remote repository so other team members can benefit from the
customizations. Configurations in this file apply solely to this
project, and take precedence over any configurations specified in the
global cumulusci.yml file, but are overridden by configurations in the
local project cumulusci.yml file.

Local Project Configurations

macOS/Linux: ~/.cumulusci/project_name/cumulusci.yml

Windows: %homepath%\.cumulusci\project_name\cumulusci.yml

Configurations in this cumulusci.yml file apply solely to the project
with the given <projectname>, and take precedence over _all other
configuration scopes. If you want to make customizations to a project,
but don’t need them to be available to other team members, make those
customizations here.

Global Configurations

macOS/Linux: ~/.cumulusci/cumulusci.yml

Windows: %homepath%\.cumulusci\cumulusci.yml

Configuration of all CumulusCI projects on your machine.
Configurations in this file have a low precedence, and are overridden by
all other configurations except for those that are in the universal
cumulusci.yml file.

Universal Configurations

There is one more configuration file that exists: the universal
cumulusci.yml [https://github.com/SFDO-Tooling/CumulusCI/blob/master/cumulusci/cumulusci.yml]
file that ships with CumulusCI itself. This file actually holds the
lowest precedence of all, as all other scopes override this file’s
contents. That said, it contains all of the definitions for the tasks,
flows, and org configurations that come standard with CumulusCI.

The commands cci task info and cci flow info display all of the
information about a task’s or flow’s configuration. They display the
information in the standard library alongside any customizations defined
in your cumulusci.yml file.

Advanced Configurations

Reference Task Return Values

Attention

Current task return values are not documented, so finding return
values set by a specific task (if any) requires you to read the source
code for the given task.

It is sometimes useful for return values to be used as input by a
subsequent task in the context of a flow. Tasks can set arbitrary return
values on themselves while executing. These values can then be
referenced by subsequent tasks in a flow.

To reference a return value on a previous task use the following syntax:

^^prior_task.return_value

To discover what’s available for return_value, find the source code
for an individual task in the CumulusCI
repository [https://github.com/SFDO-Tooling/CumulusCI/].

For example, let’s examine how CumulusCI defines the standard
upload_beta task in the universal cumulusci.yml file.

upload_beta:
 description: Uploads a beta release of the metadata currently in the packaging org
 class_path: cumulusci.tasks.salesforce.PackageUpload
 group: Release Operations

To see if anything is being set on self.return_values, find the file
that defines the class cumulusci.tasks.salesforce.PackageUpload. A
little digging yields that this class is defined in the file
package_upload.py [https://github.com/SFDO-Tooling/CumulusCI/blob/main/cumulusci/tasks/salesforce/package_upload.py]
and has a method called _set_return_values(). This
method [https://github.com/SFDO-Tooling/CumulusCI/blob/3cad07ac1cecf438aaf087cdeff7b781a1fc74a1/cumulusci/tasks/salesforce/package_upload.py##L165]
sets self.return_values to a dictionary with these keys:
version_number, version_id, and package_id.

Now look at the standard release_beta flow defined in the universal
cumulusci.yml file:

release_beta:
 description: Upload and release a beta version of the metadata currently in packaging
 steps:
 1:
 task: upload_beta
 options:
 name: Automated beta release
 2:
 task: github_release
 options:
 version: ^^upload_beta.version_number
 3:
 task: github_release_notes
 ignore_failure: True ## Attempt to generate release notes but don't fail build
 options:
 link_pr: True
 publish: True
 tag: ^^github_release.tag_name
 include_empty: True
 version_id: ^^upload_beta.version_id
 4:
 task: github_master_to_feature

This flow shows how subsequent tasks can reference the return values of
a prior task. In this case, the github_release task uses the
version_numer set by the upload_beta task as an option value with
the ^^upload_beta.version_number syntax. Similarly, the
github_release_notes task uses the version_id set by the
upload_beta task as an option value with the
^^upload_beta.version_id syntax.

Troubleshoot Configurations

Use cci task info <name> and cci flow info <name> to see how a given
task or flow behaves with current configurations.

For example, the util_sleep task has a seconds option with a default
value of 5 seconds.

$ cci task info util_sleep
util_sleep

Description: Sleeps for N seconds

Class: cumulusci.tasks.util.Sleep

Command Syntax

 $ cci task run util_sleep

Options

 -o seconds SECONDS
 Required
 The number of seconds to sleep
 Default: 5

To change the default value to 30 seconds for all projects on your
machine, add the desired value in your global
cumulusci.yml file.

tasks:
 util_sleep:
 options:
 seconds: 30

Now cci task info util_sleep shows a default of 30 seconds.

$ cci task info util_sleep
util_sleep

Description: Sleeps for N seconds

Class: cumulusci.tasks.util.Sleep

Command Syntax

 $ cci task run util_sleep

Options

 -o seconds SECONDS
 Required
 The number of seconds to sleep
 Default: 30

Displaying the active configuration for a given task or flow can help
with cross-correlating which configuration scope affects a specific
scenario.

Tip

The cci task info and cci flow info commands show information about
how a task or flow is currently configured. The information output by
these commands change as you make further customizations to your
project’s cumulusci.yml file.

 Manage Scratch Orgs

Manage Scratch Orgs

Scratch orgs are temporary Salesforce orgs that can be quickly set up
“from scratch,” and which last for no more than 30 days. There are
several reasons why scratch orgs are encouraged for development and
testing over sandboxes or Developer Edition orgs. Scratch orgs:

	Provide a repeatable starting point without the challenge of
managing persistent orgs’ state over time.

	Are scalable and ensure that individual, customized environments are
available to everyone in the development lifecycle.

	Facilitate a fully source-driven development process built around
best practices.

CumulusCI offers tools for working with all types of Salesforce orgs,
but provides the most value when working with scratch orgs. CumulusCI
automation helps realize the promise of scratch orgs as low cost,
repeatable, source-driven environments for every phase of the product
lifecycle.

This section focuses on managing scratch orgs in a CumulusCI project. To
learn about managing persistent orgs, such as sandboxes, production
orgs, and packaging orgs, visit the
Connect Persistent Orgs section.

What Is an Org in CumulusCI?

An org in CumulusCI’s keychain starts out as a named configuration,
tailored for a specific purpose within the lifecycle of the project
(such as development, QA, beta testing, and so on). CumulusCI creates
and uses scratch orgs based on these configurations on demand. In fact,
a scratch org is only generated the first time you use the scratch org.
When it’s expired or been deleted, a new one can be created again with
the same configuration.

CumulusCI offers tools that make it easy to discover predefined org
configurations, create scratch orgs based on those configurations, and
define new orgs and new configurations.

Set Up the Salesforce CLI

Scratch orgs in CumulusCI allow teams to be confident that the orgs they
develop and test in are as close to their production environments as
possible. We recommend working with scratch orgs created by Salesforce
DX.

See the Set Up SFDX section for instructions.

Predefined Orgs

CumulusCI comes with predefined org configurations. Every project’s
keychain starts with these configurations ready and available to be
turned into a live scratch org.

	Org

	Role

	Definition File

	Lifespan

	dev

	Development workflows

	orgs/dev.json

	7 days

	qa

	Testing workflows

	orgs/dev.json

	7 days

	feature

	Continuous integration

	orgs/dev.json

	1 day

	beta

	Continuous integrationHands-on testing

 Connect Persistent Orgs

Connect Persistent Orgs

In addition to creating scratch orgs in CumulusCI, you can connect persistent orgs to your
project to run tasks and flows on them. This feature supports use cases
such as deploying to a Developer Edition org to release a package
version, or installing to a sandbox for user acceptance testing.

Attention

A different setup is required to connect to orgs in the context of an
automated build. See
continuous integration for more information.

The org connect Command

To connect to a persistent org:

$ cci org connect <org_name>

This command automatically opens a browser window pointed to a
Salesforce login page. The provided <org_name> is the alias that
CumulusCI will assign to the persistent org.

Note

Connecting an org via cci org connect does not expose that org to
the Salesforce CLI.

If your org has a custom domain, use the --login-url option along with
the corresponding login url.

cci org connect <org_name> --login-url https://example.my.domain.salesforce.com

Production and Developer Edition Orgs

No options are needed for these org types. Just run the same command you
normally would to connect to a persistent org.

$ cci org connect <org_name>

Sandboxes

For sandboxes, pass the --sandbox flag along with the org name.

$ cci org connect <org_name> --sandbox

Note

The --sandbox flag can also be used for connecting a scratch org
created externally to CumulusCI.

Verify Your Connected Orgs

Run cci org list to see your org listed under the “Connected Org”
table. This example output shows a single persistent org connected to
CumulusCI with the name devhub.

$ cci org list

┌Scratch Orgs──────────────┬─────────┬──────┬─────────┬──────────────┬────────┐
│ Name │ Default │ Days │ Expired │ Config │ Domain │
├──────────────────────────┼─────────┼──────┼─────────┼──────────────┼────────┤
│ dev │ │ 7 │ X | dev │ │
├──────────────────────────┼─────────┼──────┼─────────┼──────────────┼────────┤
│ feature │ │ 1 │ X | feature │ │
├──────────────────────────┼─────────┼──────┼─────────┼──────────────┼────────┤
│ prerelease │ │ 1 │ X | prerelease │ │
├──────────────────────────┼─────────┼──────┼─────────┼──────────────┼────────┤
│ qa │ │ 7 │ X | qa │ │
├──────────────────────────┼─────────┼──────┼─────────┼──────────────┼────────┤
│ release │ │ 1 │ X | release │ │
└──────────────────────────┴─────────┴──────┴─────────┴──────────────┴────────┘

┌Connected Orgs────┬──────────────────────────────┬────────────┐
│ Name │ Default │ Username │ Expires │
├────────┼─────────┼──────────────────────────────┼────────────┤
│ devhub │ │ j.holt@mydomain.devhub │ Persistent │
└────────┴─────────┴──────────────────────────────┴────────────┘

Verify a successful connection to the org by logging in.

$ cci org browser <org_name>

Global Orgs

By default, cci org connect stores the OAuth credentials for connected
orgs in a project-specific keychain. Using a project-specific keychain
means that an org connected in Project A’s directory isn’t available
when you’re working in Project B’s directory.

Connect an org and make it available to all CumulusCI projects on your
computer by passing the --global-org flag.

$ cci org connect <org_name> --global-org

Use a Custom Connected App

CumulusCI uses a preconfigured Connected App to authenticate to
Salesforce orgs that use OAuth2. In most cases this preconfigured app is
all you need to authenticate into orgs. To control the Connected App for
specific security or compliance requirements (such as adding a private
key to sign a certificate connected with the configuration, or enforcing
restrictions on user activity), create your own Connected App and
configure CumulusCI to use it when connecting to orgs.

To create a custom Connected App, run the connected_app task, and then
manually edit its
configuration [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_connected_app.htm]
to suit your requirements.

Important

Make sure to create the Connected App in a production org!

This command will create a Connected App in the Dev Hub org connected to
sfdx, and connect it to CumulusCI as a connected_app service named
custom.

$ cci task run connected_app --label custom --connect true

After running this task, cci service list should show that the
custom connected_app service exists.

$ cci service list
 Services

Default Type Name Description
───
✔ connected_app built-in A Connected App is required to connect to and run commands
 against persistent orgs. See https://cumulusci.readthedocs.io/
 en/latest/connected-orgs.html#use-a-custom-connected-app for
 more info.
 connected_app custom A Connected App is required to connect to and run commands
 against persistent orgs. See https://cumulusci.readthedocs.io/
 en/latest/connected-orgs.html#use-a-custom-connected-app for
 more info.

Use the --connected_app option to connect an org using the custom
connected app:

$ cci org connect <org_name> --connected_app custom

To edit the Connected App’s OAuth scopes:

	In Lightning Experience, go to Setup –> Apps –> Apps Manager.

	Click the arrow on the far right side of the row that pertains to
the newly created Connected App.

	Click “Edit.”

	Add or remove OAuth scopes as desired. CumulusCI requires the api,
full, and refresh_token scopes.

For a full list of options, run the connected_app task reference documentation.

 Develop a Project

Develop a Project

A general overview on how to develop a Salesforce project with
CumulusCI.

Set Up a Dev Org

The dev_org flow creates an org to develop on by moving all metadata
(managed and unmanaged) into the org, and configuring it to be ready for
development.

Tip

Run cci flow info dev_org for a full list of the dev_org flow steps.

To run the dev_org flow against the project’s
default org:

$ cci flow run dev_org

To run the dev_org flow against a specific org, use the --org
option. The following runs the dev_org flow against the org named
dev.

$ cci flow run dev_org --org dev

Open the new dev org to begin development.

$ cci org browser dev

List Changes

To see what components have changed in a target org use the
list_changes task:

$ cci task run list_changes --org dev

Wizard Note

This functionality relies on Salesforce’s source
tracking [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_source_tracking_sandboxes.htm]
feature, which is currently available only in Scratch Orgs, Developer
Sandboxes, and Developer Pro Sandboxes.

For more information, see List and Retrieve
Options.

Retrieve Changes

The retrieve_changes task supports both
Salesforce DX and Metadata API-format source code. It utilizes the
SourceMember [https://developer.salesforce.com/docs/atlas.en-us.api_tooling.meta/api_tooling/tooling_api_objects_sourcemember.htm]
sObject to detect what has changed in an org, and also gives you
discretion regarding which components are retrieved when compared to the
dx_pull task.

To retrieve all changes in an org:

$ cci task run retrieve_changes --org dev

For information on retrieving specific subsets of changes, see List and
Retrieve Options.

--path

Manual tracking of component versions offers the possibility of
retrieving one set of changes into directory A, and retrieving a
different set of changes into directory B. By default, changes are
retrieved into the src directory when using Metadata API source
format, or the default package directory (force-app) when using
Salesforce DX source format.

To retrieve metadata into a different location use the --path
option:

$ cci task run retrieve_changes --org dev --path your/unique/path

List and Retrieve Options

When developing in an org, the changes you’re most interested in are
sometimes mixed with other changes that aren’t relevant to what you’re
doing.

For example, changing metadata like Custom Objects and Custom Fields
often results in changes to Page Layouts and Profiles that you don’t
wish to review or retrieve.

It’s a common workflow in CumulusCI to use the list_changes task,
combined with the options featured in this subsection, to narrow the
scope of changes in the org to the exact elements you desire to retrieve
in your project. When the correct set of metadata is listed, run the
retrieve_changes task to bring those changes into the repository.

--include & --exclude

When retrieving metadata from an org, CumulusCI represents each
component name as the combination of its type (such as a Profile,
CustomObject, or ApexClass) and its API name:
MemberType: MemberName. An ApexClass named MyTestClass would be
represented as ApexClass: MyTestClass.

The --include and --exclude options lets you pass multiple regular
expressions [https://en.wikipedia.org/wiki/Regular_expression] to match
against the names of changed components. This metadata is either
included or excluded depending on which option the regular expression is
passed. Multiple regular expressions can be passed in a comma-separated
list.

The following lists all modified metadata that ends in “Test” and
“Data” in the default org.

$ cci task run list_changes --include "Test$,Data$"

Since the metadata string that CumulusCI processes also includes the
MemberType, use exclusions and inclusions that filter whole types of
metadata.

The following will list all changes except for those with a type of
Profile.

$ cci task run list_changes --exclude "^Profile: "

--types

To list or retrieve changed metadata of the same type, use the --types
option along with the metadata
type [https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_types_list.htm]
to retrieve.

The following retrieves all changed ApexClass and ApexComponent
entities in the default org.

$ cci task run retrieve_changes --types ApexClass,ApexComponent

Push Changes

Developers often use an editor or IDE like Visual Studio Code to modify
code and metadata stored in the repository. After making changes in an
editor, push these changes from your project’s local repository to the
target org.

If your project uses the Salesforce DX source format, use the
dx_push task.

$ cci task run dx_push

If your project uses the Metadata API source format, use the
deploy task:

$ cci task run deploy

The deploy task has many options for handling a number of different
scenarios. For a comprehensive list of options, see the
deploy task reference.

Run Apex Tests

CumulusCI can execute Apex tests in an org with the run_tests task,
and optionally report on test outcomes and code coverage. Failed tests
can also be retried automatically.

$ cci task run run_tests --org <org_name>

The run_tests task has many options for running tests. For a
comprehensive list of options and examples, see the
run_tests task reference.

Set Up a QA Org

The qa_org flow sets up org environments where quality engineers test
features quickly and easily. qa_org runs the specialized config_qa
flow after deploying the project’s unmanaged metadata to the org.

The following runs the qa_org flow against the qa org.

$ cci flow run qa_org --org qa

Create QA Configurations

Out of the box, and even in some active projects, the config_dev and
config_qa flows are the same. Many teams have a requirement for
additional configurations to be deployed when performing QA, but not
when developing a new feature.

At Salesforce.org, our product teams often modify the config_qa flow
to deploy configurations that pertain to large optional features in a
package. These configurations are subsequently tested by the product’s
Robot Framework test suites.

To retrieve your own QA configurations, spin up a new org:

$ cci flow run qa_org

Make the necessary changes, and run:

$ cci task run retrieve_qa_config

This task defaults to retrieving this metadata under
unpackaged/config/qa.

Tip

The configuration metadata can also be stored in a different location by
using the --path option.

To delete the org…

$ cci org remove qa

Then re-create it…

$ cci flow run qa_org --org qa

Then run the deploy_qa_config to deploy the previously retrieved
configurations to the org.

$ cci task run deploy_qa_config --org qa

To require that the qa_org flow always runs this task, add a
deploy_qa_config task step under the flows__config_qa section of the
cumulusci.yml file.

config_qa:
 steps:
 3:
 task: deploy_qa_config

Now config_qa (which is included in the qa_org flow) executes the
deploy_qa_config task as the third step in the flow.

Manage Dependencies

CumulusCI is built to automate the complexities of dependency management
for projects that extend, customize, or compose other projects. CumulusCI
currently handles these main types of dependencies for projects.

	GitHub Repository: Dynamically resolve a product release, and
its own dependencies, from a CumulusCI project on GitHub.

	Packages: Require a specific version of a managed package or
unlocked package.

	Unmanaged Metadata: Require the deployment of unmanaged
metadata.

Dependencies are listed in the project__dependencies section of
cumulusci.yml

project:
 dependencies:

The update_dependencies task handles deploying dependencies to a
target org, and is included in all flows designed to deploy or install
to an org, such as dev_org, qa_org, install_prod, and others.

To run the update_dependencies task manually:

$ cci task run update_dependencies

GitHub Repository Dependencies

GitHub repository dependencies create a dynamic dependency between the
current project and another CumulusCI project on GitHub. This is an
example of listing Salesforce.org’s
EDA [https://github.com/SalesforceFoundation/EDA] product as a
dependency.

project:
 dependencies:
 - github: https://github.com/SalesforceFoundation/EDA

When update_dependencies runs, these steps are taken against the
referenced repository.

	Look for the cumulusci.yml file and parse if found.

	Determine if the project has subfolders under unpackaged/pre. If
found, deploy them first, in alphabetical order.

	Determine if the project specifies any dependencies in the
cumulusci.yml file. If found, recursively resolve those
dependencies and any dependencies belonging to them.

	Determine whether to install the project as as a managed package or unmanaged metadata:

: - If the project has a namespace configured in the
cumulusci.yml file, treat the project as a managed package
unless the unmanaged option is set to True in the
dependency. - If the project has a namespace and is not configured as
unmanaged, use the GitHub API to locate the latest managed
release of the project and install it.

	If the project is an unmanaged dependency, the main source directory
is deployed as unmanaged metadata.

	Determine if the project has subfolders under unpackaged/post. If
found, deploy them next, in alphabetical order. Namespace tokens are
replaced with <namespace>__ if the project is being installed as a
managed package, or an empty string otherwise.

Reference Unmanaged Projects

If the referenced repository does not have a namespace configured, or if
the dependency specifies the unmanaged option as True, the
repository is treated as unmanaged.

Here is a project with Salesforce.org’s
EDA [https://github.com/SalesforceFoundation/EDA] package listed as an
unmanaged dependency:

project:
 dependencies:
 - github: https://github.com/SalesforceFoundation/EDA
 unmanaged: True

The EDA repository is configured for a namespace, but the dependency
specifies unmanaged: True, so EDA deploys as unmanaged metadata.

CumulusCI only supports unmanaged repositories in Metadata API source
format at present.

Reference a Specific Tag

To reference a specific version of the product other than the most
recent commit on the main branch (for unmanaged projects) or the most
recent production release (for managed packages), use the tag option
to specify a tag from the target repository. This option is useful for
testing against specific package versions, pinning a dependency to a
version rather than using the latest release, and recreating org
environments for debugging.

project:
 dependencies:
 - github: https://github.com/SalesforceFoundation/EDA
 tag: rel/1.105

The EDA repository’s tag rel/1.105 is used instead of the latest
production release of EDA (1.111, for this example).

Skip unpackaged/* in Reference Repositories

If the referenced repository has unpackaged metadata under
unpackaged/pre or unpackaged/post, use the skip option to skip
deploying that metadata with the dependency.

project:
 dependencies:
 - github: https://github.com/SalesforceFoundation/EDA
 skip: unpackaged/post/course_connection_record_types

Package Dependencies

Managed package and unlocked package dependencies are rather simple.
Under the project__dependencies section of the cumulusci.yml file,
specify the namespace of the target package, and the required version
number, or specify the package version id.

project:
 dependencies:
 - namespace: npe01
 version: 3.6
 - version_id: 04t000000000001

Package dependencies can include any package, whether or not it is built
as a CumulusCI project. Dependencies on managed packages may be
specified using the namespace and version or the version id.
Dependencies on unlocked packages should use the version id.

Package Install Keys (Passwords)

Some packages are protected by an install key, which must be present in
order to install the package. CumulusCI dependencies can use the
password_env_name key to instruct CumulusCI to retrieve the package
install key from an environment variable. This key is available on both
package version dependencies and on GitHub dependencies:

project:
 dependencies:
 - namespace: my_namespace
 version: 3.6
 password_env_name: INSTALL_KEY
 - github: https://github.com/MyOrg/MyRepo
 password_env_name: MY_REPO_KEY

Unmanaged Metadata Dependencies

Specify unmanaged metadata to be deployed by specifying a zip_url or a
github URL, and, optionally, subfolder, namespace_inject,
namespace_strip, and unmanaged under the project__dependencies
section of the cumulusci.yml file.

project:
 dependencies:
 - zip_url: https://SOME_HOST/metadata.zip
 - github: https://github.com/SalesforceFoundation/EDA
 subfolder: unpackaged/post/course_connection_record_types
 ref: 0cabfe

When the update_dependencies task runs, it downloads the zip file or
GitHub subdirectory and deploys it via the Metadata API. The zip file
must contain valid metadata for use with a deploy, including a
package.xml file in the root.

Unmanaged metadata dependencies from GitHub may optionally specify the
ref to download. If they do not, unmanaged GitHub dependencies are
resolved like other GitHub references. See Controlling GitHub
Dependency Resolution for
more details on resolution of dynamic dependencies.

Note

In versions of CumulusCI prior to 3.33.0, unmanaged GitHub dependencies
always deployed the most recent commit on the default branch.

Specify a Subfolder

Use the subfolder option to specify a subfolder of the zip file or
GitHub repository to use for the deployment.

Tip

This option is handy when referring to metadata stored in a GitHub
repository.

When update_dependencies runs, it still downloads the zip from
zip_url, but then builds a new zip containing only the content of
subfolder, starting inside subfolder as the zip’s root.

Inject Namespace Prefixes

CumulusCI has support for tokenizing references to a package’s
namespace prefix in code. When tokenized, all occurrences of the
namespace prefix, are replaced with %%%NAMESPACE%%% inside of files
and ___NAMESPACE___ in file names. The namespace_inject option
instructs CumulusCI to replace these tokens with the specified namespace
before deploying the unpackaged dependency.

For more on this topic see Namespace Injection.

Pinning GitHub Dependencies

By default, CumulusCI resolves dynamic GitHub dependencies to the latest
available releases. In some cases, this may be undesirable. You can use
dependency pinning to control how dependencies are resolved, including
transitive dependencies referenced by your own direct dependencies.

Use the project__dependency_pins section of your cumulusci.yml to
establish pins. Each pin includes the keys github, which must match
the URL of the repo you wish to pin, and a tag to which you wish to
pin the dependency. Here’s an example that pins NPSP and its transitive
dependencies to specific versions:

project:
 dependencies:
 - github: https://github.com/SalesforceFoundation/NPSP
 dependency_pins:
 - github: https://github.com/SalesforceFoundation/NPSP
 tag: rel/3.219
 - github: https://github.com/SalesforceFoundation/Contacts_and_Organizations
 tag: rel/3.19
 - github: https://github.com/SalesforceFoundation/Households
 tag: rel/3.16
 - github: https://github.com/SalesforceFoundation/Recurring_Donations
 tag: rel/3.22
 - github: https://github.com/SalesforceFoundation/Relationships
 tag: rel/3.12
 - github: https://github.com/SalesforceFoundation/Affiliations
 tag: rel/3.10

Pins affect resolution of managed package versions and any unmanaged dependencies
included in the target repositories.

If CumulusCI encounters a conflict with an existing tag or other specifier
while attempting to pin dependencies, like this:

project:
 dependencies:
 - github: https://github.com/SalesforceFoundation/NPSP
 tag: rel/3.220
 dependency_pins:
 - github: https://github.com/SalesforceFoundation/NPSP
 tag: rel/3.219

it will stop and require you to resolve the conflict by removing either the pin
or the dependency specification.

We recommend using pins only when referencing external products whose development
process or release schedule you do not control, such as NPSP and EDA.
In most cases, it’s preferable for dependencies within a product suite to remain
unpinned to support ongoing development.

Controlling GitHub Dependency Resolution

CumulusCI converts dynamic dependencies specified via GitHub
repositories into specific package versions and commit references by
applying one or more resolvers. You can customize the resolvers that
CumulusCI applies to control when it will use beta managed packages or
second-generation feature test packages, or to intervene more deeply in
the dependency resolution process.

CumulusCI organizes resolvers into resolution strategies, which are
named, ordered lists of resolvers to apply. When CumulusCI applies a
resolution strategy to a dependency, it applies each resolver from top
to bottom until a resolver succeeds in resolving the dependency.

Three resolution strategies are provided in the CumulusCI standard
library:

	latest_release, which will attempt to resolve to the latest
managed release of a managed package project.

	include_beta, which will attempt to resolve to the latest beta,
if any, or managed release of a managed package project.

	commit_status, which will resolve to second-generation package
betas created on feature branches, if any, before falling back to
managed package releases. This strategy is used only in the
qa_org_2gp and ci_feature_2gp flows.

The complete list of steps taken by each resolution strategy is given
below.

Each flow that resolves dependencies selects a resolution strategy that
meets its needs. Two aliases, production, and preproduction, are
defined for this purpose, because in many cases a development flow like
dev_org or install_beta will want to utilize a different
resolution strategy than a production flow like ci_master or
install_prod.

By default, both production and preproduction use the
latest_release resolution strategy. To opt to have development flows
use beta versions of managed package dependencies, you can switch the
preproduction alias to point to the include_beta resolution
strategy:

project:
 dependency_resolutions:
 preproduction: include_beta
 production: latest_release

After this change, flows like dev_org will install beta releases of
dependencies, if present.

Resolution Strategy Details

The standard resolution strategies execute the following steps to
resolve a dependency:

commit_status:

This resolution strategy is suitable for feature builds on products that
utilize a release branch model and build second-generation package betas
(using the build_feature_test_package flow) on each commit.

	If a tag is present, use the commit for that tag, and any
package version found there. (Resolver: tag)

	If the current branch is a release branch (feature/NNN, where
feature/ is the feature branch prefix and NNN is any integer)
or a child branch of a release branch, locate a branch with the
same name in the dependency repository. If a commit status
contains a beta package Id for any of the first five commits on
that branch, use that commit and package. (Resolver:
commit_status_exact_branch)

	If the current branch is a release branch (feature/NNN, where
feature/ is the feature branch prefix and NNN is any integer)
or a child branch of a release branch, locate a matching release
branch (feature/NNN) in the dependency repository. If a commit
status contains a beta package Id for any of the first five
commits on that branch, use that commit and package. (Resolver:
commit_status_release_branch)

	If the current branch is a release branch (feature/NNN, where
feature/ is the feature branch prefix and NNN is any integer)
or a child branch of a release branch, locate a branch for either
of the two previous releases (e.g., feature/230 in this
repository would search feature/229 and feature/228) in the
dependency repository. If a commit status contains a beta package
Id for any of the first five commits on that branch, use that
commit and package. (Resolver:
commit_status_previous_release_branch)

	Identify the most recent beta package release via the GitHub
Releases section. If located, use that package and commit.
(Resolver: latest_beta)

	Identify the most recent production package release via the GitHub
Releases section. If located, use that package and commit.
(Resolver: latest_release)

	Use the most recent commit on the repository’s main branch as an
unmanaged dependency. (Resolver: unmanaged)

include_beta:

This resolution strategy is suitable for any pre-production build for
products that wish to consume beta releases of their dependencies during
development and testing.

	If a tag is present, use the commit for that tag, and any package
version found there. (Resolver: tag)

	Identify the most recent beta package release via the GitHub
Releases section. If located, use that package and commit.
(Resolver: latest_beta)

	Identify the most recent production package release via the GitHub
Releases section. If located, use that package and commit.
(Resolver: latest_release)

	Use the most recent commit on the repository’s main branch as an
unmanaged dependency. (Resolver: unmanaged)

latest_release:

This resolution strategy is suitable for any build for products that
wish to consume production releases of their dependencies during
development and testing. It is also suitable for production flows (such
as install_prod or a MetaDeploy installer flow) for all products.

	If a tag is present, use the commit for that tag, and any package
version found there. (Resolver: tag)

	Identify the most recent production package release via the GitHub
Releases section. If located, use that package and commit.
(Resolver: latest_release)

	Use the most recent commit on the repository’s main branch as an
unmanaged dependency. (Resolver: unmanaged)

Customizing Resolution Strategies

Projects that require deep control of how dependencies are resolved can
create custom resolution strategies.

To add a resolution strategy, add a list of the resolvers desired to the
section project__dependency_resolutions__resolution_strategies in
cumulusci.yml. For example:

dependency_resolutions:
 production: releases_only
 resolution_strategies:
 releases_only:
 - latest_release

would create a new resolution strategy called releases_only that
only can resolve to a production release. (Dependencies without a
production release would cause a failure). It also assigns the alias
production to point to releases_only, meaning that standard flows
like install_prod would use this resolution strategy.

Customizing resolution strategies is an advanced topic. The
out-of-the-box resolution strategies provided with CumulusCI will cover
the needs of most projects. However, this capability is available for
projects that need it.

Automatic Cleaning of meta.xml Files on Deploy

To let CumulusCI fully manage the project’s dependencies, the deploy
task (and other tasks based on cumulusci.tasks.salesforce.Deploy, or
subclasses of it) automatically removes the <packageVersion> element
and its children from all meta.xml files in the deployed metadata.
Removing these elements does not affect the files on the filesystem.

This feature supports CumulusCI’s automatic dependency resolution by
avoiding a need for projects to manually update XML files to reflect
current dependency package versions.

Note

If the metadata being deployed references namespaced metadata that does
not exist in the currently installed package, the deployment throws an
error as expected.

Note

The automatic cleaning of meta.xml files can be disabled by setting
the clean_meta_xml option to False.

Developers can also use the meta_xml_dependencies task to update the
meta.xml files locally using the versions from CumulusCI’s calculated
project dependencies.

Use Tasks and Flows from a Different Project

Dependency handling is used in a very specific context: to install
dependency packages or metadata bundles in a dependencies flow that is
a component of some other flow.

CumulusCI also makes it possible to use automation (tasks and flows)
from another CumulusCI project. This feature supports many use cases,
including:

	Applying configuration from a dependency project, rather than just
installing the package.

	Running Robot Framework tests that are defined in a dependency.

For more information, see Tasks and Flows from a Different Project.

 Automate Data Operations

Automate Data Operations

CumulusCI offers a suite of tasks to help you to manage data as part of
your project automation. Within your repository, you can define one or
several datasets, collections of data you use for specific purposes.
CumulusCI tasks support extracting defined datasets from scratch orgs or
persistent orgs, storing those snapshots within the repository, and
automating the load of datasets into orgs. Data operations are executed
via the Bulk and REST APIs.

A dataset consists of:

	a definition file, written in YAML, which specifies the sObjects
and fields contained in the dataset and the order in which they are
loaded or extracted from an org.

	a storage location, which may take the form of a SQL database
(typically, a SQLite file stored within the repository, although
external databases are supported) or a SQL script file.

Datasets are stored in the datasets/ folder within a repository by
default. Projects created with a recent version of CumulusCI ship with
this directory in place.

The Lifecycle of a Dataset

A dataset starts with a definition: which objects, and which fields, are
to be captured, persisted, and loaded into orgs? (The details of
definition file format are covered below).

With a definition available, the dataset may be captured from an org
into the repository. A captured dataset may be stored under version
control and incorporated into project automation, loaded as part of
flows during org builds or at need. As the project’s needs evolve,
datasets may be re-captured from orgs and versioned alongside the
project metadata.

Projects may define one or many datasets. Datasets can contain an
arbitrary amount of data.

Defining Datasets

A dataset is defined in YAML as a series of steps. Each step registers a
specific sObject as part of the dataset, and defines the relevant fields
on that sObject as well as its relationships to other sObjects that are
included in the data set.

Note

This section discusses how to define a dataset and the format of
the definition file. In many cases, it’s easier to use the
generate_dataset_mapping task than to create this definition by
hand. See below for more details.

A simple dataset definition looks like this:

```yaml
Accounts:
    sf_object: Account
    fields:
        - Name
        - Description
        - RecordTypeId
    lookups:
        ParentId:
            table: Account
            after: Accounts
Contacts:
    sf_object: Contact
    fields:
        - FirstName
        - LastName
        - Email
    lookups:
        AccountId:
            table: Account





This example defines two steps: Accounts and Contacts. (The names of
steps are arbitrary). Each step governs the extraction or load of
records in the sObject denoted in its sf_object property.

Relationships are defined in the lookups section. Each key within
lookups is the API name of the relationship field. Beneath, the
table key defines the stored table to which this relationship refers.

CumulusCI loads steps in order. However, sObjects earlier in the
sequence of steps may include lookups to sObjects loaded later, or to
themselves. For these cases, the after key may be included in a lookup
definition, with a value set to the name of the step after which the
referenced record is expected to be available. CumulusCI will defer
populating the lookup field until the referenced step has been
completed. In the example above, an after definition is used to
support the ParentId self-lookup on Account.


API Selection

By default, CumulusCI will determine the data volume of the specified
object and select an API for you: for under 2,000 records, the REST
Collections API is used; for more, the Bulk API is used. The Bulk API is
also used for delete operations where the hard delete operation is
requested, as this is available only in the Bulk API. Smart API
selection helps increase speed for low- and moderate-volume data loads.

To prefer a specific API, set the api key within any mapping step;
allowed values are "rest", "bulk", and "smart", the default.

CumulusCI defaults to using the Bulk API in Parallel mode. If required
to avoid row locks, specify the key bulk_mode: Serial in each step
requiring the use of serial mode.

For all API modes, you can specify a batch size using the batch_size
key. Allowed values are between 1 and 200 for the REST API and 1 and
10,000 for the Bulk API.

Note that the semantics of batch sizes differ somewhat between the REST
API and the Bulk API. In the REST API, the batch size is the size of
upload batches and also the actual size of individual transactions. In
the Bulk API, the batch size is the maximum record count in a Bulk API
upload batch, which is subject to its own limits, including restrictions
on total processing time. Bulk API batches are automatically chunked
further into transactions by the platform, and the transaction size
cannot be controlled.




Upserts

The definition of “upsert” is an operation which creates new records
and updates existing records depending on a field (the update key) which
determines whether the input row and the existing row are “the same”.

You can do ID-based,
idLookup-based [https://developer.salesforce.com/docs/atlas.en-us.204.0.object_reference.meta/object_reference/access_for_fields.htm##access_lookup]
and external
ID [https://help.salesforce.com/s/articleView?id=sf.faq_import_general_what_is_an_external.htm&type=5]-based
upserts [https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/langCon_apex_dml_examples_upsert.htm]
and updates by specifying additional settings in a mapping step.

Insert Accounts:
    sf_object: Account
    action: upsert
    update_key: Extid__c
    fields:
        - Name
        - Extid__c





Whenever update_key is supplied, the action must be upsert and vice
versa.




Database Mapping

CumulusCI’s definition format includes considerable flexibility for use
cases where datasets are stored in SQL databases whose structure is not
identical to the Salesforce database. Salesforce objects may be assigned
to arbitrary database tables, and Salesforce field names mapped to
arbitrary columns.

For new mappings, it’s recommended to allow CumulusCI to use sensible
defaults by specifying only the Salesforce entities. Legacy datasets are
likely to include explicit database mappings, which would look like this
for the same data model as above:

Accounts:
    sf_object: Account
    table: Account
    fields:
        Name: Name
        Description: Description
        RecordTypeId: RecordTypeId
    lookups:
        ParentId:
            table: Account
            after: Accounts
Contacts:
    sf_object: Contact
    table: Contact
    fields:
        FirstName: FirstName
        LastName: LastName
        Email: Email
    lookups:
        AccountId:
            table: Account





Note that in this version, fields are specified as a colon-separated
mapping, not a list. Each pair in the field map is structured as
Salesforce API Name: Database Column Name. Additionally, each object
has a table key to specify the underlying database table.

New mappings that do not connect to an external SQL database (that is,
mappings which simply extract and load data between Salesforce orgs)
should not need to use this feature, and new mappings that are generated
by CumulusCI use the simpler version shown above. Existing mappings may
be converted to this streamlined style in most cases by loading the
existing dataset, modifying the mapping file, and then extracting a
fresh copy of the data. Note however that datasets which make use of
older and deprecated CumulusCI features, such as the record_type key,
may need to continue using explicit database mapping.




Record Types

CumulusCI supports automatic mapping of Record Types between orgs, keyed
upon the Developer Name. To take advantage of this support, simply
include the RecordTypeId field in any step. CumulusCI will
transparently extract Record Type information during dataset capture and
map Record Types by Developer Name into target orgs during loads.

Older dataset definitions may also use a record_type key:

Accounts:
    sf_object: Account
    fields:
        - Name
    record_type: Organization





This feature limits extraction to records possessing that specific
Record Type, and assigns the same Record Type upon load.

It’s recommended that new datasets use Record Type mapping by including
the RecordTypeId field. Using record_type will result in CumulusCI
issuing a warning.




Relative Dates

CumulusCI supports maintaining relative dates, helping to keep the
dataset relevant by ensuring that date and date-time fields are updated
when loaded.

Relative dates are enabled by defining an anchor date, which is
specified in each mapping step with the anchor_date key, whose value
is a date in the format 2020-07-01.

When you specify a relative date, CumulusCI modifies all date and
date-time fields on the object such that when loaded, they have the same
relationship to today as they did to the anchor date. Hence, given a
stored date of 2020-07-10 and an anchor date of 2020-07-01, if you
perform a load on 2020-09-10, the date field will be rendered as
2020-09-19 -nine days ahead of today’s date, as it was nine days ahead
of the anchor date.

Relative dates are also adjusted upon extract so that they remain
stable. Extracting the same data mentioned above would result in
CumulusCI adjusting the date back to 2020-07-10 for storage, keeping it
relative to the anchor date.

Relative dating is applied to all date and date-time fields on any
mapping step that contains the anchor_date clause. If orgs are
configured [https://help.salesforce.com/articleView?id=000334139&language=en_US&type=1&mode=1]
to permit setting audit fields upon record creation and the appropriate
user permission is enabled, CumulusCI can apply relative dating to audit
fields, such as CreatedDate. For more about how to automate that
setup, review the create_bulk_data_permission_set task below.

For example, this mapping step:

Contacts:
    sf_object: Contact
    fields:
        - FirstName
        - LastName
        - Birthdate
    anchor_date: 1990-07-01





would adjust the Birthdate field on both load and extract around the
anchor date of July 1, 1990. Note that date and datetime fields not
mapped, as well as fields on other steps, are unaffected.




Person Accounts

CumulusCI supports extracting and loading person account data. In your
dataset definition, map person account fields like LastName,
PersonBirthdate, or CustomContactField__pc to Account steps
(i.e. where sf_object equals Account).

Account:
    sf_object: Account
    table: Account
    fields:
        ## Business Account Fields
        - Name
        - AccountNumber
        - BillingStreet
        - BillingCity

        ## Person Account Fields
        - FirstName
        - LastName
        - PersonEmail
        - CustomContactField__pc

        ## Optional (though recommended) Record Type
        - RecordTypeId






Record Types

It’s recommended, though not required, to extract Account Record Types
to support datasets with person accounts so there is consistency in the
Account record types loaded. If Account RecordTypeId is not extracted,
the default business account Record Type and default person account
Record Type will be applied to business and person account records
respectively.




Extract

During dataset extraction, if the org has person accounts enabled, the
IsPersonAccount field is extracted for Account and Contact
records so CumulusCI can properly load these records later.
Additionally, Account.Name is not createable for person account
Account records, so Account.Name is not extracted for person
account Account records.




Load

Before loading, CumulusCI checks if the dataset contains any person
account records (i.e. any Account or Contact records with
IsPersonAccount as true). If the dataset does contain any person
account records, CumulusCI validates the org has person accounts
enabled.

You can enable person accounts for scratch orgs by including the
PersonAccounts [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch-orgs_def_file_config_values.htm##so_personaccounts/]
feature in your scratch org definition.






Advanced Features

CumulusCI supports two additional keys within each step

The filters key encompasses filters applied to the SQL data store when
loading data. Use of filters can support use cases where only a subset
of stored data should be loaded. :

filters:
    - 'SQL string'





Note that filters uses SQL syntax, not SOQL. Filters do not perform
filtration or data subsetting upon extraction; they only impact loading.
This is an advanced feature.

The static key allows individual fields to be populated with a fixed,
static value:

static:
    CustomCheckbox__c: True
    CustomDateField__c: 2019-01-01





The soql_filter key lets you specify a WHERE clause that should be
used when extracting data from your Salesforce org:

 Account:
      sf_object: Account
      table: Account
      fields:
        - Name
        - Industry
        - Type
      soql_filter: "Industry = 'Higher Education' OR Type = 'Higher Education'"





Note that trying to load data that is extracted using soql_filter may
cause “invalid cross reference id” errors if related object records
are filtered on extract. Use this feature only if you fully understand
how CumulusCI load data task
resolves references to related records when loading data to a Salesforce
org.


Primary Keys

CumulusCI offers two modes of managing Salesforce Ids and primary keys
within the stored database.

If the fields list for an sObject contains a mapping:

Id: sf_id





CumulusCI will extract the Salesforce Id for each record and use that Id
as the primary key in the stored database.

If no such mapping is provided, CumulusCI will remove the Salesforce Id
from extracted data and replace it with an autoincrementing integer
primary key.

Use of integer primary keys may help yield more readable text diffs when
storing data in SQL script format. However, it comes at some performance
penalty when extracting data. It’s recommended that most mappings do
not map the Id field and allow CumulusCI to utilize the automatic
primary key.




Handling Namespaces

All CumulusCI bulk data tasks support automatic namespace injection or
removal. In other words, the same mapping file will work for namespaced
and unnamespaced orgs, as well as orgs with the package installed
managed or unmanaged. If a mapping element has no namespace prefix and
adding the project’s namespace prefix is required to match a name in
the org, CumulusCI will add one. Similarly, if removing a namespace is
necessary, CumulusCI will do so.

In the extremely rare circumstance that an org contains the same mapped
schema element in both namespaced and non-namespaced form, CumulusCI
does not perform namespace injection or removal for that element.

Namespace injection can be deactivated by setting the
inject_namespaces option to False.

The generate_dataset_mapping generates mapping files with no namespace
and this is the most common pattern in CumulusCI projects.




Namespace Handing with Multiple Mapping Files

It’s also possible, and common in older managed package products, to
use multiple mapping files to achieve loading the same data set in both
namespaced and non-namespaced contexts. This is no longer recommended
practice.

A mapping file that is converted to use explicit namespacing might look
like this:

Original version: :

Destinations:
    sf_object: Destination__c
    fields:
        Name: Name
        Target__c: Target__c
    lookups:
        Supplier__c:
            table: Supplier__c





Namespaced version: :

Destinations:
    sf_object: MyNS__Destination__c
    table: Destination__c
    fields:
        MyNS__Name: Name
        MyNS__Target__c: Target__c
    lookups:
        MyNS__Supplier__c:
            key_field: Supplier__c
            table: Supplier__c





Note that each of the definition elements that refer to local storage
remains un-namespaced, while those elements referring to the Salesforce
schema acquire the namespace prefix.

For each lookup, an additional key_field declaration is required,
whose value is the original storage location in local storage for that
field’s data. In most cases, this is simply the version of the field
name in the original definition file.

Adapting an originally-namespaced definition to load into a
non-namespaced org follows the same pattern, but in reverse.

Note that mappings which use the flat list style of field specification
must use mapping style to convert between namespaced and non-namespaced
deployment.

It’s recommended that all new mappings use flat list field
specifications and allow CumulusCI to manage namespace injection. This
capability typically results in significant simplication in automation.




Optional Data Elements

Some projects need to build datasets that include optional data
elements - fields and objects that are loaded into some of the
project’s orgs, but not others. This can cover both optional managed
packages and features that are included in some, but not all, orgs. For
example, a managed package A that does not require another managed
package B but is designed to work with it may wish to include data for
managed package B in its data sets, but load that data if and only if B
is installed. Likewise, a package might wish to include data supporting
a particular org feature, but not load that data in an org where the
feature is turned off (and its associated fields and objects are for
that reason unavailable).

To support this use case, the load_dataset and extract_dataset tasks
offer a drop_missing_schema option. When enabled, this option results
in CumulusCI ignoring any mapped fields, sObjects, or lookups that
correspond to schema that is not present in the org.

Projects that require this type of conditional behavior can build their
datasets in an org that contains managed package B, capture it, and then
load it safely in orgs that both do and do not contain B. However, it’s
important to always capture from an org with B present, or B data will
not be preserved in the dataset.








Custom Settings

Datasets don’t support Custom Settings. However, a separate task is
supplied to deploy Custom Settings (both list and hierarchy) into an
org: load_custom_settings. The data for this task is defined in a YAML
text file

Each top-level YAML key should be the API name of a Custom Setting. List
Custom Settings should contain a nested map of names to values.
Hierarchy Custom settings should contain a list, each of which contains
a data key and a location key. The
location key may contain either profile: \<profile name\>, user: name: \<username\>,
user: email: \<email\>, or org.

Example: :

List__c:
    Test:
        MyField__c: 1
    Test 2:
        MyField__c: 2
Hierarchy__c:
    -
        location: org
        data:
            MyField__c: 1
    -
        location:
            user:
                name: test@example.com
        data:
            MyField__c: 2"""





CumulusCI will automatically resolve the location specified for
Hierarchy Custom Settings to a SetupOwnerId. Any Custom Settings
existing in the target org with the specified name (List) or setup owner
(Hierarchy) will be updated with the given data.




Dataset Tasks


create_bulk_data_permission_set

Create and assign a Permission Set that enables key features used in
Bulk Data tasks (Hard Delete and Set Audit Fields) for the current user.
The Permission Set will be called CumulusCI Bulk Data.

Note that prior to running this task you must ensure that your org is
configured to allow the use of Set Audit Fields. You can do so by
manually updating the required setting in the User Interface section of
Saleforce Setup, or by updating your scratch org configuration to
include :

"securitySettings": {
  "enableAuditFieldsInactiveOwner": true
}





For more information about the Set Audit Fields feature, review this
Knowledge
article [https://help.salesforce.com/articleView?id=000213290&type=1].

After this task runs, you’ll be able to run the delete_data task with
the hardDelete option, and you’ll be able to map audit fields like
CreatedDate.




extract_dataset

Extract the data for a dataset from an org and persist it to disk.


Options


	mapping: the path to the YAML definition file for this dataset.


	sql_path: the path to a SQL script storage location for this
dataset.


	database_url: the URL for the database storage location for this
dataset.




mapping and either sql_path or database_url must be supplied.

Example: :

cci task run extract_dataset -o mapping datasets/qa/mapping.yml -o sql_path datasets/qa/data.sql --org qa










load_dataset

Load the data for a dataset into an org. If the storage is a database,
persist new Salesforce Ids to storage.


Options


	mapping: the path to the YAML definition file for this dataset.


	sql_path: the path to a SQL script storage location for this
dataset.


	database_url: the URL for the database storage location for this
dataset.


	start_step: the name of the step to start the load with (skipping
all prior steps).


	ignore_row_errors: If True, allow the load to continue even if
individual rows fail to load. By default, the load stops if any
errors occur.




mapping and either sql_path or database_url must be supplied.

Example: :

cci task run load_dataset -o mapping datasets/qa/mapping.yml -o sql_path datasets/qa/data.sql --org qa










generate_dataset_mapping

Inspect an org and generate a dataset definition for the schema found
there.

This task is intended to streamline the process of creating a dataset
definition. To use it, first build an org (scratch or persistent)
containing all of the schema needed for the dataset.

Then, execute generate_dataset_mapping. The task inspects the target
org and creates a dataset definition encompassing the project’s schema,
attempting to be minimal in its inclusion outside that schema.
Specifically, the definition will include:


	Any custom object without a namespace


	Any custom object with the project’s namespace


	Any object with a custom field matching the same namespace criteria


	Any object that’s the target of a master-detail relationship, or a
custom lookup relationship, from another included object.




On those sObjects, the definition will include


	Any custom field (including those defined by other packages)


	Any required field


	Any relationship field targeting another included object


	The Id, FirstName, LastName, and Name fields, if present




Certain fields will always be omitted, including


	Lookups to the User object


	Binary-blob (base64) fields


	Compound fields


	Non-createable fields




The resulting definition file is intended to be a viable starting point
for a project’s dataset. However, some additional editing is typically
required to ensure the definition fully suits the project’s use case.
In particular, any fields required on standard objects that aren’t
automatically included must be added manually.


Reference Cycles

Dataset definition files must execute in a sequence, one sObject after
another. However, Salesforce schemas often include reference cycles:
situations in which Object A refers to Object B, which also refers to
Object A, or in which Object A refers to itself.

CumulusCI will detect these reference cycles during mapping generation
and ask the user for assistance resolving them into a linear sequence of
load and extract operations. In most cases, selecting the schema’s most
core object (often a standard object like Account) will successfully
resolve reference cycles. CumulusCI will automatically tag affected
relationship fields with after directives to ensure they’re populated
after their target records become available.




Options


	path: Location to write the mapping file. Default:
datasets/mapping.yml


	ignore: Object API names, or fields in Object.Field format, to
ignore


	namespace_prefix: The namespace prefix to treat as belonging to
the project, if any




Example: :

cci task run generate_dataset_mapping --org qa -o namespace_prefix my_ns










load_custom_settings

Load custom settings stored in YAML into an org.


Options


	settings_path: Location of the YAML settings file.









delete_data

You can also delete records using CumulusCI. You can either delete every
record of a particular object, certain records based on a where clause
or every record of multiple objects. Because where clauses seldom make
logical sense when applied to multiple objects, you cannot use a where
clause when specifying multiple objects.

Details are available with cci org info delete_data and [in the task reference] (delete-data).


Examples

cci task run delete_data -o objects Opportunity,Contact,Account --org qa

cci task run delete_data -o objects Opportunity -o where "StageName = 'Active' "

cci task run delete_data -o objects Account -o ignore_row_errors True

cci task run delete_data -o objects Account -o hardDelete True










update_data

To update records using CumulusCI, provide:


	a command line or task configuration describing what to update


	a recipe in a subset of Snowfakery syntax that says how to update it




On the command line, you can run an update like this:

$ cci task run update_data --recipe datasets/update.recipe.yml --object Account

This command downloads every Account in the org and applies the fields
from the specified update recipe file.

You can filter the rows that you’re updating like this:

$ cci task run update_data --recipe datasets/update.recipe.yml --object Account --where "name like 'AAA%'"

The recipe for an update can be as simple as this:

object: Account
fields:
NumberOfEmployees: 10000





You can use all of the power of snowfakery to add fake data:

object: Account
fields:
NumberOfEmployees: 10_000
BillingStreet:
fake: Streetname





Using Snowfakery formulas, you can also refer to specific input fields
like this:

object: Account
fields:
Description: ${{input.Name}} is our favorite customer in ${{input.BillingCity}}





To tell CumulusCI to extract those fields and make them use the fields
option:

$ cci task run update_data --recipe datasets/update.recipe.yml --object Account --Fields Name,BillingCity

You can learn more about Snowfakery syntax in the next section.






Generate Fake Data

It is possible to use CumulusCI to generate arbitrary amounts of
synthetic data using the snowfakery
task [https://cumulusci.readthedocs.io/en/latest/tasks.html#snowfakery].
That task is built on the Snowfakery
language [https://snowfakery.readthedocs.io/en/docs/]. CumulusCI ships
with Snowfakery embedded, so you do not need to install it.

To start, you will need a Snowfakery recipe. You can learn about writing
them in the Snowfakery
docs [https://snowfakery.readthedocs.io/en/docs/].

Once you have it, you can fill an org with data like this:

$ cci task run snowfakery --recipe datasets/some_snowfakery_recipe.yml

If you would like to execute the recipe multiple times to generate more
data, you do so like this:

$ cci task run generate_and_load_from_yaml --run-until-recipe-repeated 400

Which will repeat the recipe 400 times.

There are two other ways to control how many times the recipe is
repeated: --run-until-records-loaded and
--run-until-records-in-org.


Generated Record Counts

Consider this example:

$ cci task run snowfakery --run-until-records-loaded 1000:Account

This would say to run the recipe until the task has loaded 1000 new
Accounts. In the process, it might also load Contacts, Opportunities,
custom objects oor whatever else is in the recipe. But it finishes when
it has loaded 400 Accounts.

The counting works like this:



	Snowfakery always executes a complete recipe. It never stops
halfway through. If your recipe creates more records than you
need, you might overshoot. Usually the amount of overshoot is just
a few records, but it depends on the details of your recipe.


	At the end of executing a recipe, it checks whether it has created
enough of the object type mentioned by the
--run-until-records-loaded parameter.


	If so, it finishes. If not, it runs the recipe again.







So if your recipe creates 10 Accounts, 5 Contacts and 15 Opportunities,
then when you run the command above it will run the recipe 100 times
(100*10=1000) which will generate 1000 Accounts, 500 Contacts and 1500
Opportunities.

--run-until-records-in-org} works similarly, but it
determines how many times to run the recipe based on how many records
are in the org at the start. For example, if the org already has 300
Accounts in it then:

$ cci task run snowfakery --run-until-records-in-org 1000:Account

Would be equivalent to --run-until-records-loaded 700:Account because one needs to add 700 Accounts to the
300 resdent ones to get to 1000.




Controlling the Loading Process

CumulusCI’s data loader has many knobs and switches that you might want
to adjust during your load. It supports a “.load.yml” file format
which allows you to manipulate these load settings. The simplest way to
use this file format is to make a file in the same directory as your
recipe with a filename that is derived from the recipe’s by replacing
everything after the first “.” with “.load.yml”. For example, if
your recipe is called “babka.recipe.yml” then your load file would be
“babka.load.yml”.

Inside of that file you put a list of declarations in the following
format:

- sf_object: Account
  api: bulk
  bulk_mode: parallel





Which would specifically load accounts using the bulk API’s parallel
mode.

The specific keys that you can associate with an object are:


	api: “smart”, “rest” or “bulk”


	batch_size: a number


	bulk_mode: “serial” or “parallel”


	load_after: the name of another sobject to wait for before loading




“api”, “batch_size” and “bulk_mode” have the same meanings that
they do in mapping.yml as described in API Selection.

For example, one could force Accounts and Opportunities to load after
Contacts:

- sf_object: Account
  load_after: Contact

- sf_object: Opportunity
  load_after: Contact





If you wish to share a loading file between multiple recipes, you can
refer to it with the --loading_rules option. That will override the
default filename (<recipename>.load.yml). If you want both, or any
combination of multiple files, you can do that by listing them with
commas between the filenames.




Batch Sizes

You can also control batch sizes with the -o batch_size BATCHSIZE
parameter. This is not the Salesforce bulk API batch size. No matter
what batch size you select, CumulusCI will properly split your data into
batches for the bulk API.

You need to understand the loading process to understand why you might
want to set the batch_size.

If you haven’t set the batch_size then Snowfakery generates all of
the records for your load job at once.

So the first reason why you might want to set the batch_size is because
you don’t have enough local disk space for the number of records you
are generating (across all tables).

This isn’t usually a problem though.

The more common problem arises from the fact that Salesforce bulk
uploads are always done in batches of records a particular SObject. So
in the case above, it would upload 1000 Accounts, then 500 Contacts,
then 1500 Opportunities. (remember that our scenario involves a recipe
that generates 10 Accounts, 5 Contacts and 15 Opportunities).

Imagine if the numbers were more like 1M, 500K and 1.5M. And further,
imagine if your network crashed after 1M Accounts and 499K Contacts were
uploaded. You would not have a single “complete set” of 10/5/15.
Instead you would have 1M “partial sets”.

If, by contrast, you had set your batch size to 100000, your network
might die more around the 250,000 Account mark, but you would have
200,000/201 =10K _complete sets plus some “extra” Accounts which
you might ignore or delete. You can restart your load with a smaller
goal (800K Accounts) and finish the job.

Another reason you might choose smaller batch sizes is to minimize the
risk of row locking errors when you have triggers enabled. Turning off
triggers is generally preferable, and CumulusCI has a
task [https://cumulusci.readthedocs.io/en/latest/tasks.html#disable-tdtm-trigger-handlers]
for doing for TDTM trigger handlers, but sometimes you cannot avoid
them. Using smaller batch sizes may be preferable to switching to serial
mode. If every SObject in a batch uploads less than 10,000 rows then you
are defacto in serial mode (because only one “bulk mode batch” at a
time is being processed).

In general, bigger batch sizes achieve higher throughput. No batching at
all is the fastest.

Smaller batch sizes reduce the risk of something going wrong. You may
need to experiment to find the best batch size for your use case.




	1

	remember that our sets have 20 Accounts each













            

          

      

      

    

  

  
    
    
    Acceptance Testing with Robot Framework
    

    
 
  

    
      
          
            
  
Acceptance Testing with Robot Framework

CumulusCI comes with a testing framework called Robot
Framework [https://robotframework.org/] (or just Robot), which is
specifically for writing acceptance tests. These are typically
end-to-end tests that verify that the high-level requirements of a
project have been satisfied. (Think “Add a new student and verify they
have been assigned a mentor” or “Create a case plan when the student
is not enrolled in a program”.) Usually, this involves automating a
browser session with Salesforce, but Robot can also be used to test new
APIs created by your team.

Later sections of this document will show you how to write tests, call
APIs, create custom keywords, and so on. But first there’s a bit of
manual configuration to do.


Get Started

The test that comes with CumulusCI opens a browser and performs some
automation. For that to work, you need to install
Chrome [https://www.google.com/chrome/], and a driver for your specific
version of Chrome. We don’t ship this driver by default because browser
versions are continually updating, and different platforms require
different drivers.

If you don’t already have Chrome on your machine, download and install
it in the default location, and then download the appropriate driver
from the chromedriver download
page [https://chromedriver.chromium.org/downloads]. Download the latest
stable version that corresponds to your Chrome version, and place it
where Robot can find it. This usually means /usr/local/bin for Linux
and OSX-based systems. (It can go anywhere as long as it’s on your
PATH.)

For more information, see Getting
Started [https://sites.google.com/chromium.org/driver/getting-started?authuser=0]
on the chromedriver website.


Fun Fact

You can skip this step and still see Robot in action with CumulusCI. The
tests will fail, but you can still see what it’s like to run a test,
and the output that it produces.




You Get a Test! And You Get a Test!

When you initialize a repository to work with CumulusCI (see Start a
new CumulusCI
Project [https://cumulusci.readthedocs.io/en/stable/get-started.html?highlight=project%20init##start-a-new-cumulusci-project]),
you automatically get a preconfigured robot task to run all of your
Robot tests at the same time. We also install one example test,
create_contact.robot, that shows how to write both browser-based and
API-based tests. In fact, we’ve gone ahead and created a complete
folder hierarchy for tests, test results, and everything else related to
Robot, all starting in a folder named robot at the top of your
repository.

<ProjectName>
├── robot
│   └── <ProjectName>
│       ├── doc
│       ├── resources
│       └── tests
│           └── create_contact.robot






Note

The create_contact.robot file is in plain text, so you can open it
with any text editor you have on your machine. One of the features we
love about Robot is that the files are not in a proprietary format.








Run Your First Test

You can run all tests for a project with a simple command line. In case
you don’t have a default org defined, we’ll include instructions on
which scratch org to use.

$ cci task run robot --org dev





If all goes well, the browser pops up, navigates around a bit, and then
closes. The output on your screen looks something like this, though you
might see additional information about creating the scratch org.

$ cci task run robot --org dev
2021-08-04 16:28:32: Getting org info from Salesforce CLI for test-yeqqkbxks2ny@example.com
2021-08-04 16:28:35: Beginning task: Robot
2021-08-04 16:28:35: As user: test-yeqqkbxks2ny@example.com
2021-08-04 16:28:35: In org: 00D0R000000Tz56
2021-08-04 16:28:35:
==============================================================================
Tests
==============================================================================
Tests.Create Contact
==============================================================================
Via API                                                               | PASS |
------------------------------------------------------------------------------
Via UI                                                                | PASS |
------------------------------------------------------------------------------
Tests.Create Contact                                                  | PASS |
2 tests, 2 passed, 0 failed
==============================================================================
Tests                                                                 | PASS |
2 tests, 2 passed, 0 failed
==============================================================================
Output:  /projects/<ProjectName>/robot/<ProjectName>/results/output.xml
Log:     /projects/<ProjectName>/robot/<ProjectName>/results/log.html
Report:  /projects/<ProjectName>/robot/<ProjectName>/results/report.html





Notice the three lines at the end that point to an XML file and two HTML
files. These paths will be different on your machine and reflect the
path to your repository. All Robot results go into the
robot/<ProjectName>/results folder. These files are overwritten each
time you run your Robot tests.

Robot places all of the test results in output.xml, and then generates
log.html and report.html, which contain two different human-readable
views of the results. log.html is more developer-friendly and contains
debugging information. report.html is a high-level report of successes
and failures.


View Log and Report Files

You can open these files in a browser with the open command.

$ open robot/<ProjectName>/results/log.html





[image: image]

Feel free to open output.xml or report.html if you’re curious. In
our experience, log.html is the most useful for humans, and it’s the
one we use when reporting test results.

Want to learn more? The next section goes into more detail about why we
love Robot Framework, and how you can write your own tests.






So Why Robot?

Robot is a
keyword-driven [https://robocorp.com/docs/languages-and-frameworks/robot-framework/keywords]
acceptance testing framework, which means that users can write test
cases in an intuitive, human-readable language made up of high-level,
reusable keywords (Open test browser,
Delete records and close browser) rather than in a programming
language.

For example, this basic Robot test case file creates a new Contact
record, and then examines the record to confirm that the fields listed
are correct. You can see how straightforward the keyword syntax is. Even
someone brand new to test automation can grasp the function of the
Salesforce Insert, Salesforce Get, and Should be equal keywords.

*** Settings ***
Resource        cumulusci/robotframework/Salesforce.robot
Documentation   A simple Robot test

*** Test Cases ***
Create a Contact using the API

   ## Create a new Contact
   ${contact id}=   Salesforce Insert  Contact
   ...  FirstName=Eleanor
   ...  LastName=Rigby

   ## Get the new Contact and examine it
   &{contact}=      Salesforce Get  Contact  ${contact id}
   Should be equal  ${contact}[FirstName]    Eleanor
   Should be equal  ${contact}[LastName]     Rigby








The Robot Framework Advantage

Acceptance testing touches on multiple aspects of an application such as
the data model, custom APIs, performance, and the user experience in the
browser. Existing tools like Apex and Jest are good for writing unit
tests and low-level integration tests. However, it can be difficult to
understand the intent of a test, and the features being tested, when the
test itself involves multiple lines of code detailing where to fetch
data from, and how, and other such implementation details.

Robot addresses these challenges with a few strategies, helping you
write high-level acceptance tests for every aspect of an application,
often in a single test suite.


	Human-readable, domain-specific test cases: Robot lets you create a
language tailored to the domain of testing Salesforce applications
(a domain-specific language, or DSL). The DSL consists of reusable
keywords that present a complex set of instructions in a
human-readable language. The result? Test cases that all project
stakeholders can easily understand, such as a product manager, scrum
master, documentation teams, and so on–not just the test authors.
In the previous example, Salesforce Insert, Salesforce Get and
Should be equal are all keywords.


	Keyword libraries: Robot organizes keywords into libraries, which
provide a simple, effective method to organize and share keywords
between tests and projects. CumulusCI comes with a comprehensive
standard library of Robot keywords created specifically to
anticipate the needs of Salesforce testers. In the previous example,
when you define Salesforce.robot as a resource, it automatically
pulls in dozens of Salesforce-specific keywords.


	Streamlined test cases: Keywords allow implementation details to be
handled by the test but not explicitly itemized in the test. In the
previous example, a new Contact record is created with the
Salesforce Insert keyword, but we don’t see all the steps
required to make an API call to create the record, such as getting
an access token, creating an API payload, making the API call, and
parsing the results. We see only two keywords that communicate with
Salesforce via an API: one to create the Contact record, and
another to retrieve the new record to confirm it has the correct
first and last names.





Robot-specific Tasks

CumulusCI integrates with Robot via custom tasks, such as:


	robot: Runs one or more Robot tests. This task is the most common.


	robot_libdoc: Runs the
libdoc [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#library-documentation-tool-libdoc]
command, which creates an HTML file defining all the keywords in a
library or resource file.


	robot_testdoc: Runs the
testdoc [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#test-data-documentation-tool-testdoc]
command, which creates an HTML file documenting all the tests in a
test suite.


	robot_lint: Runs the static analysis tool
rflint [https://github.com/boakley/robotframework-lint/], which can
validate Robot tests against a set of rules related to code quality.




Like with any CumulusCI task, you can get documentation and a list of
arguments with the cci task info command. For example,
cci task info robot displays documentation for the robot task.




Custom Keywords

CumulusCI provides a set of keywords unique to both Salesforce and
CumulusCI for acceptance testing. These keywords can run other tasks,
interact with Salesforce applications, call Salesforce APIs, and so on.
For a list of all custom keywords provided by CumulusCI, see
Keywords.html [https://cumulusci.readthedocs.io/en/stable/Keywords.html].


Tip

In addition to the keywords that come with CumulusCI, you can write
project-specific keywords that are either based on existing keywords, or
implemented in Python.








Write a Sample Robot Test Case

Now that you have a general understanding of why Robot is ideal for
acceptance testing with CumulusCI, let’s construct a test case file
that creates a new Contact record.


	Run cci project init, which creates the create_contact.robot
test case file that comes standard whenever you initialize a project
with CumulusCI.


	In the robot/<ProjectName>/tests folder, save this code in a new
file named new_contact_record.robot.




*** Settings ***
Resource        cumulusci/robotframework/Salesforce.robot
Documentation   A simple Robot test

*** Test Cases ***
Create a Contact using the API

   ## Create a new Contact
   ${contact id}=   Salesforce Insert  Contact
   ...  FirstName=Eleanor
   ...  LastName=Rigby

   ## Get the new Contact and examine it
   &{contact}=      Salesforce Get  Contact  ${contact id}
   Should be equal  ${contact}[FirstName]    Eleanor
   Should be equal  ${contact}[LastName]     Rigby





You can tell that both create_contact.robot and
new_contact_record.robot are test case files because each one has a
.robot extension and contains a Test Cases section. The
new_contact_record.robot test case file is a simplified version of
create_contact.robot. We feature it in this documentation for simpler
code samples.


Syntax

Here’s a quick primer on the syntax in the new_contact_record.robot
test case file.



	Symbol

	Name

	Description and Usage





	***

	Section Heading

	A line that begins with one or more asterisks is a section heading. Byconvention, we use three asterisks on both sides of a heading to designatea section heading. Section headings include Settings, Test Cases, Keywords, Variables, Comments, and Tasks.
  
    
    
    Managing Locators
    

    
 
  

    
      
          
            
  
Managing Locators

The keywords that come with CumulusCI are based on the open source
keyword library
SeleniumLibrary [http://robotframework.org/SeleniumLibrary/SeleniumLibrary.html].
This library supports multiple ways to reference an element: by XPath,
by CSS selector, by id, by text, and so on. SeleniumLibrary calls these
location strategies.

You can specify a strategy by providing a prefix to the locator. For
example:


	id:123 specifies an element with an id of 123


	xpath://div[text()='Hello, world'] lets you specify an element by
an xpath expression


	css:div.slds-spinner defines an object by its css path





Tip

You can find the full list of supported locator strategies in the
section titled Explicit locator
strategy [https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html#Explicit%20locator%20strategy]
in the SeleniumLibrary documentation.



In this section, we’ll show how to create a project-specific locator
strategy by storing locators in a dictionary and then associating them
with a custom prefix.


Storing locators in a dictionary

The first step toward creating custom locator strategies with the
locator manager is to define your project’s locators in a dictionary. If
you have just a handful of locators you can define them directly in a
keyword library. You can also save them in a separate file.

If you need to be able to run tests against a prerelease org you might
want to store your locators in two files: one for the current release
and one for the prerelease. You can then import the appropriate version
at runtime.


Note

In order to keep the examples short we’re only going to focus on
supporting one release at a time in this documentation.



The locator dictionary can include nested dictionaries, so you can
organize locators into logical groups. Each leaf node can be any locator
string supported by SeleniumLibrary. Notice that these locator strings
can include locators of different types.

For example, consider the following set of locators which we might find
in a library of keywords for dealing with the calendar tab:

locators = {
    "sidebar": {
        "options button": "css:a[role='button'][title='Calendar Options']",
        "new button": "css:a[role='menuitem'][title='New Calendar']",
    },
    "modal": {
        "window": "xpath://div[@role='dialog'][.//h2[.='Create Calendar']]",
        "next button": "css:a.wzButtonSaveAndNext",
    }
}





We’ve organized the locators into two logical groupings: one related to
elements on the sidebar, and one related to elements of a modal window.
Notice also that three of the locators are CSS selectors and one is an
XPath.


Tip

Dictionaries can be nested as deeply as you want, but it’s rarely
necessary to have locators more than a couple of levels deep.






Registering the locator dictionary

SeleniumLibrary provides a way to register custom location
strategies [http://robotframework.org/SeleniumLibrary/SeleniumLibrary.html#Custom%20locators]
via the Add Location
Strategy [http://robotframework.org/SeleniumLibrary/SeleniumLibrary.html#Add%20Location%20Strategy]
keyword. While it’s possible to write your own strategies using
keywords, the locator manager makes it easy to associate a locator
prefix with a dictionary of locators.

This registration is done via the register_locators method of the
locator manager, and should be done in the __init__ method of a
keyword library.

For example, here is what it might look like for a library that contains
keywords for the calendar tab.

from robot.libraries.BuiltIn import BuiltIn
from cumulusci.robotframework import locator_manager

locators = {...}  ## see previous example

class CalendarLibrary:
    ROBOT_LIBRARY_SCOPE = "GLOBAL"

    def __init__(self):
        locator_manager.register_locators("calendar", locators)





When this library is imported into a test case file, the prefix
“calendar” is registered with SeleniumLibrary as a custom locator
strategy.




Using custom locators

Once the dictionary has been defined and has been registered with a
prefix, the locators work very similarly to any other locator. If the
dictionaries are nested, you can separate the levels with a period (ie:
dot notation).

For example, with our example locators the options button locator can be
used like this:

Click element   calendar:sidebar.options button





The following table shows how the locator is parsed:



calendar: locator prefix

sidebar first level of the dictionary (eg: locators['sidebar'])

. a level separator

options button the next level of a nested dictionary (eg:
locators['sidebar']['options_button'])






Parameterized Locators

Sometimes the only difference between multiple elements on a page is the
text displayed in that element. For example, the html markup for a save,
edit, and cancel button may be identical except for the word “Save”,
“Edit”, or “Cancel”.

While you can create a separate locator for each button, it’s better to
use a single parameterized locator for multiple buttons, which gives you
more flexibility.

Notice in our calendar locators we have one locator for a menuitem
with the title of ‘New Calendar’:

locators = {
    ...
    "new_button": "css:a[role='menuitem'][title='New Calendar']",
    ...
}





For a calendar menu with multiple menuitems, you can use a unique
locator for each, or a single parameterized locator so that you only
need to maintain one locator.

To create a locator with one or more parameters, replace a portion of
the locator with [{}]{.title-ref} like this:

locators = {
    ...
    "menu_item": "css:a[role='menuitem'][title='{}']",
    ...
}





When you use the locator, you can pass one or more parameters by
specfying a comma separated list of values after a colon. For example:

Click element  calendar:sidebar.menu_item:New Calendar





The [{}]{.title-ref} placeholders are replaced with the parameter
values, in order. For example, the title in the above example becomes
[New Calendar]{.title-ref}.


Note

If your locator has more than one parameter (ie: more than one instance
of [{}]{.title-ref} within the locator definition), parameters will be
replaced in the order in which they are supplied. The first parameter
after the [:]{.title-ref} and before a comma will be used in place of
the first [{}]{.title-ref}, the next parameter will be used in place of
the next [{}]{.title-ref}, and so on.









            

          

      

      

    

  

  
    
    
    Robot Advanced Topics
    

    
 
  

    
      
          
            
  
Robot Advanced Topics

In the previous section we gave a broad overview of how Robot Framework
is integrated with CumulsCI. In this section we’ll take a deeper dive
into some advanced topics.


Running CumulusCI Tasks

CumulusCI provides two keywords for running a task from within a robot
test case: Run Task [https://cumulusci.readthedocs.io/en/stable/Keywords.html#CumulusCI.Run-Task] and Run Task
Class [https://cumulusci.readthedocs.io/en/stable/Keywords.html#CumulusCI.Run-Task-Class].

Run Task [https://cumulusci.readthedocs.io/en/stable/Keywords.html#CumulusCI.Run-Task] can be used to run any
CumulusCI tasks configured for the project. Tasks run can be any of
CumulusCI’s standard tasks as well as project-specific custom tasks
from the project’s cumulusci.yml file. Run Task accepts a single
argument, the task name, along with any arguments required by the task.

Run Task Class [https://cumulusci.readthedocs.io/en/stable/Keywords.html#CumulusCI.Run-Task-Class] works in a
similar fashion, but the task can be specified as a python class rather
than a task name. For example, you can use this keyword to run logic
from CumulusCI tasks which have not been configured in the project’s
cumulusci.yml file. This is most useful in cases where a test needs to
use task logic for logic unique to the test and thus not worth making
into a named task for the project.




Performance Testing

The Salesforce keyword library somes with several keywords to aid in
performance testing.


Setting the elapsed time

Normally, the full execution time of a test is recorded in the robot
framework log. This includes the time spent in both test setup and
teardown. Sometimes it is preferable to report only the time spent in
the test case itself.

The Set Test Elapsed
Time [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Set-Test-Elapsed-Time] keyword
allows you to record a computed elapsed time. For example, when
performance testing a Salesforce batch process, you have the option to
store the Salesforce-measured elapsed time of the batch process instead
of the time measured in the CumulusCI client process.

The Set Test Elapsed
Time [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Set-Test-Elapsed-Time] keyword
takes a single optional argument, either a number of seconds or a Robot
time
string [https://robotframework.org/robotframework/latest/libraries/DateTime.html#Time%20formats].

When using this keyword, the tag cci_metric_elapsed_time will
automatically be added to the test case.

When the test is run via MetaCI, the computed time will be retrieve and
stored inside MetaCI instead of the total elapsed time as measured by
Robot Framework.




Start and End Performance Time

A time can be recorded for any group of keywords by calling Start
Performance Timer and Stop Performance Timer. The latter will
automatically call the Set Test Elapsed
Time [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Set-Test-Elapsed-Time] keyword.

The Start Performance
Timer [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Start-Performance-Timer] keyword
starts a timer. The Stop Performance
Timer [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Stop-Performance-Timer] keyword
stops the timer and stores the result with Set Test Elapsed
Time [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Set-Test-Elapsed-Time].




Setting Test Metrics

The Set Test Metric [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Set-Test-Metric]
keyword retrieves any metric for performance monitoring, such as number
of queries, rows processed, CPU usage, and more.

The keyword takes a metric name, which can be any string, and a value,
which can be any number.

Using this keyword will automatically add the tag cci_metric to the
test case and ${cci_metric_<metric_name>} to the test’s variables.
These permit downstream processing in tools like CCI and MetaCI.

Note: cci_metric is not included in Robot’s html statistical
roll-ups.

Set Test Metric    Max_CPU_Percent    30





Performance test metrics are output in the CCI logs, log.html and
output.xml. MetaCI captures them but does not currently have a user
interface for displaying them.




Elapsed Time for Last Record

The Elapsed Time For Last
Record [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Elapsed-Time-For-Last-Record]
keyword queries Salesforce for its recorded log of a job.

For example, to query an Apex bulk job:

${time_in_seconds} =    Elapsed Time For Last Record
...             obj_name=AsyncApexJob
...             where=ApexClass.Name='BlahBlah'
...             start_field=CreatedDate
...             end_field=CompletedDate
...             order_by=CompletedDate










Browser Testing

Testing salesforce from within a browser presents some unique
challenges. This section covers some Salesforce-specific features of our
keyword libraries.


Waiting for Lightning UI

A common challenge when writing end-to-end UI tests is waiting for
asynchronous actions to complete before proceeding to run the next
interaction. The Salesforce Library is aware of the Lightning UI and can
handle waiting automatically. After each click, the Salesforce Library
waits for any pending requests to the server to complete. (Manually
waiting using “sleep”, or waiting for a particular element to appear,
can still be necessary after specific interactions, and when interacting
with pages that don’t use the Lightning UI.)






API Keywords

In addition to browser interactions, the Salesforce Library also
provides keywords for interacting with the Salesforce REST API. Here are
the keywords we provide which talk directly to Salesforce via an API
rather than through the UI:


	Salesforce Collection
Insert [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Salesforce-Collection-Insert]:
Creates a collection of objects based on a template.


	Salesforce Collection
Update [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Salesforce-Collection-Update]:
Updates a collection of objects.


	Salesforce Delete [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Salesforce-Delete]:
Deletes a record using its type and ID.


	Salesforce Get [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Salesforce-Get]: Gets a
dictionary of a record from its ID.


	Salesforce Insert [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Salesforce-Insert]:
Inserts a record using its type and field values. Returns the ID.


	Salesforce Query [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Salesforce-Query]:
Runs a simple query using the object type and <field_name=value>
syntax. Returns a list of matching record dictionaries.


	Salesforce Update [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Salesforce-Update]:
Updates a record using its type, ID, and <field_name=value>
syntax.


	SOQL Query [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.SOQL-Query]: Runs a SOQL
query and returns a REST API result dictionary.




Using Page Objects —————–

The
PageObjects [https://cumulusci.readthedocs.io/en/stable/Keywords.html#file-cumulusci.robotframework.PageObjects]
library provides support for page objects, Robot Framework-style. Even
though Robot is a keyword-driven framework, it’s also possible to
dynamically load in keywords unique to a page or an object on the page.

With the PageObjects library, you can define classes that represent
page objects. Each class provides keywords that are unique to a page or
a component. These classes can be imported on demand only for tests that
use these pages or components.


The pageobject Decorator

Page objects are normal Python classes that use the pageobject
decorator provided by CumulusCI. Unlike traditional Robot Framework
keyword libraries, you can easily define and use keywords in multiple
classes within a single file.

To create a page object class, start by inheriting from one of the
provided base classes. You need to use the pageobject decorator to
designate the class as a page object, and to describe the type of page
(Listing, Detail, etc) and the associated salesfore object. From within
a test, these page objects are referenced using both the type and object
name (eg: Go to page Listing CustomObject__c).

The following example illustrates how to create a Listing page object
for CustomObject__c.

from cumulusci.robotframework.pageobjects import ListingPage, pageobject

@pageobject(page_type='Listing', object_name='CustomObject__c')
class CustomObjectListingPage(ListingPage):
    ...






Using object aliases

Within a test, if you want to refer to the page object with a more
human-readable name such as Custom Object rather than
CustomObject__c you can do so by setting object_name to
Custom Object and then defining _object_name in the class, as in the
following example.

from cumulusci.robotframework.pageobjects import ListingPage, pageobject

@pageobject(page_type = 'Listing', object_name = 'My Object')
class CustomObjectListingPage(ListingPage):
    _object_name = 'MyObject__c'
    ...





By using an alias, you can reference the page object with either the
alias or the actual object name. For example, if object_name is set as
described above, the following two uses of Go to page are identical:

Go to page  Listing  My Object
Go to page  Listing  MyObject__c










Page Object Base Classes

CumulusCI provides the following base classes, which should be used for
all classes that use the pageobject decorator. You can import these
base classes from cumulusci.robotframework.pageobjects.


	cumulusci.robotframework.pageobjects.BasePage [https://cumulusci.readthedocs.io/en/stable/Keywords.html#file-cumulusci/robotframework/pageobjects/BasePageObjects.py] A generic base class used by the other pageobject classes. Use the BasePage class for creating custom page objects when none of the other base classes make sense.

: - The BasePage adds the Log current page object keyword to
every page object. This keyword is most useful when
debugging tests. It will add information about the currently
loaded page object to the log file generated when the test
runs.



	cumulusci.robotframework.pageobjects.DetailPage: A class for a
page object that represents a detail page.


	cumulusci.robotframework.pageobjects.HomePage: A class for a page
object that represents a home page.


	cumulusci.robotframework.pageobjects.ListingPage: A class for a
page object that represents a listing page.


	cumulusci.robotframework.pageobject.NewModal: A class for a page
object that represents the “new object” modal.


	cumulusci.robotframework.pageobject.ObjectManagerPage: A class for
interacting with the object manager.







Common page object attributes

When using the decorator and inheriting from one of the page object base
classes, your class inherits the following attributes and properties.


	self._object_name: The name of the object related to the class. If
the class does not define this property, it is set to the value
provided as the object_name parameter to the pageobject
decorator. Note: do not add the namespace prefix in the decorator.
This attribute automatically adds the prefix from the
cumulusci.yml file when necessary.


	self.object_name: A property that combines the _object_name
attribute with the namespace returned by the get namespace prefix
keyword from the CumulusCI library. If there is no namespace, this
returns the value of the _object_name attribute.


	self.builtin: A reference to the Robot Framework BuiltIn library
that you can use to directly call built-in keywords. You can call
any built-in keyword by converting the name to all lowercase, and
replacing all spaces with underscores (such as self.builtin.log
and self.builtin.get_variable_value).


	self.cumulusci: A reference to the CumulusCI keyword library. You
can call any keyword in this library by converting the name to all
lowercase, and replacing all spaces with underscores (such as
self.cumulusci.get_org_info).


	self.salesforce: A reference to the Salesforce keyword library.
You can call any keyword in this library by converting the name to
all lowercase, and replacing all spaces with underscores (such as
self.salesforce.wait_until_loading_is_complete).


	self.selenium: A reference to SeleniumLibrary. You can call any
keyword in this library by converting the name to all lowercase, and
replacing all spaces with underscores (such as
self.selenim.wait_until_page_contains_element).







Example Page Object

This example shows the definition of a page object for the listing page
of custom object MyObject__c wherein a new custom keyword,
Click on the row with name, is added.

from cumulusci.robotframework.pageobjects import pageobject, ListingPage

@pageobject(page_type="Listing", object_name="MyObject__c")
class MyObjectListingPage(ListingPage):

    def click_on_the_row_with_name(self, name):
        self.selenium.click_link('xpath://a[@title="{}"]'.format(name))
        self.salesforce.wait_until_loading_is_complete()








Importing the Page Object Library Into a Test

The PageObjects library is not only a keyword library, but also the
mechanism to import files that contain page object classes. You can
import these files by providing the paths to one or more Python files
that implement page objects. You can also import PageObjects without
passing any files to it to take advantage of general purpose page
objects.

For example, consider a case where you create two files that each have
one or more page object definitions: PageObjects.py and
MorePageObjects.py, both located in the robot/MyProject/resources
folder. You can import these page objects from these files into a test
suite.

*** Settings ***
Library         cumulusci.robotframework.PageObjects
...  robot/MyProject/resources/PageObjects.py
...  robot/MyProject/resources/MorePageObjects.py








Using Page Objects

As mentioned in the previous section, you must first import the
PageObjects library and any custom page object files you wish to use.

Next, either explicitly load the keywords for a page object, or
reference a page object with one of the generic page object
keywords provided by the PageObjects library.

To explicitly load the keywords for a page object, use the
Load Page Object keyword provided by the PageObjects library. If
successful, the PageObjects library will automatically import the
keywords.

For example, call the Go To Page keyword followed by a page object
reference. If the keyword (or page object reference?) navigates you to
the proper page, its keywords will automatically be loaded.




Page Object Keywords

The PageObjects library provides these keywords.


	Current Page Should
Be [https://cumulusci.readthedocs.io/en/stable/Keywords.html#PageObjects.Current-Page-Should-Be]


	Get Page Object [https://cumulusci.readthedocs.io/en/stable/Keywords.html#PageObjects.Get-Page-Object]


	Go To Page
Object [https://cumulusci.readthedocs.io/en/stable/Keywords.html#PageObjects.Go-To-Page-Object]


	Load Page Object [https://cumulusci.readthedocs.io/en/stable/Keywords.html#PageObjects.Load-Page-Object]


	Log Page Object
Keywords [https://cumulusci.readthedocs.io/en/stable/Keywords.html#PageObjects.Log-Page-Object]


	Wait For Modal [https://cumulusci.readthedocs.io/en/stable/Keywords.html#PageObjects.Wait-For-Modal]


	Wait For Page
Object [https://cumulusci.readthedocs.io/en/stable/Keywords.html#PageObjects.Wait-For-Page-Object]







Current Page Should Be

Example: Current Page Should Be Listing Contact

This keyword attempts to validate that the given page object represents
the current page. Each page object may use its own method for making the
determination, but the built-in page objects all compare the page
location to an expected pattern (such as .../lightning/o/...). If the
assertion passes, the keywords for that page object automatically load.

This keyword is useful if you get to a page via a button or some other
form of navigation because it lets you assert that you are on the page
you think you should be on, and load the keywords for that page, with a
single statement.


Get Page Object

Example: Get page object Listing Contact

This keyword is most often used to get the reference to a keyword from
another keyword. It is similar in function to robot’s built-in Get
Library
Instance [http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Get%20Library%20Instance]
keyword. It is rarely used in a test.




Go To Page

Example: Go to page Listing Contact

This keyword attempts to go to the listing page for the Contact object,
and then load the keywords for that page.




Log Page Object Keywords

Example: Log Page Object Keywords

This keyword is primarily used as a debugging tool. When called, it will
log each of the keywords for the current page object.




Load Page Object

Example: Load page object Listing Contact

This keyword loads the page object for the given page_type and
object_name. It is useful when you want to use keywords from a page
object without first navigating to that page (for example, when you are
already on the page and don’t want to navigate away).




Wait for Modal

Example: Wait for modal New Contact

This keyword can be used to wait for a modal, such as the one that pops
up when creating a new object. The keyword returns once a modal appears,
and has a title of New <object_name> (such as “New Contact”).




Wait for Page Object

Example: Wait for page object Popup ActivityManager

Page objects don’t have to represent entire pages. You can use the
Wait for page object keyword to wait for a page object representing a
single element on a page, such as a popup window.






Generic Page Objects

You don’t need to create a page object in order to take advantage of
page object keywords. If you use one of the page object keywords for a
page that does not have its own page object, the PageObjects library
attempts to find a generic page.

For example, if you use Current page should be Home Event and there
is no page object by that name, a generic Home page object will be
loaded, and its object name will be set to Event.

Or let’s say your project has created a custom object named
Island__c. You don’t have a home page, but the object does have a
standard listing page. Without creating any page objects, this test
works by using generic implementations of the Home and Listing page
objects:

*** Test Cases ***
Example test which uses generic page objects
    ## Go to the custom object home page, which should
    ## redirect to the listing page
    Go To Page  Home  Island__c

    ## Verify that the redirect happened
    Current Page Should Be  Listing  Island__c





CumulusCI provides these generic page objects.


Detail

Example: Go to page Detail Contact ${contact id}

Detail pages refer to pages with a URL that matches the pattern
<host>/lightning/r/<object name>/<object id>/view.




Home

Example: Go to page Home Contact

Home pages refer to pages with a URL that matches the pattern
“<host>/lightning/o/<object name>/home”






Listing

Example: Go to page Listing Contact

Listing pages refer to pages with a URL that matches the pattern
“<host>b/lightning/o/<object name>/list”


New

Example: Wait for modal New Contact

The New page object refers to the modal that pops up when creating a new
object.

Of course, the real power comes when you create your own page object
class that implements keywords that can be used with your custom
objects.








Configuring the robot_libdoc Task

If you define a robot resource file named MyProject.resource and place
it in the resources folder, you can add this configuration to the
cumulusci.yml file to enable the robot_libdoc task to generate
documentation.

tasks:
    robot_libdoc:
        description: Generates HTML documentation for the MyProject Robot Framework Keywords
        options:
            path: robot/MyProject/resources/MyProject.resource
            output: robot/MyProject/doc/MyProject_Library.html





Normally this task will generate HTML output. If the output file ends
with “.csv”, a csv file will be generated instead.

To generate documentation for more than one keyword file or library,
give a comma-separated list of files for the path option, or define
path as a list under tasks__robot_libdoc in the cumulusci.yml
file.

For example, generate documentation for MyLibrary.py and
MyLibrary.resource.

tasks:
    robot_libdoc:
        description: Generates HTML documentation for the MyProject Robot Framework Keywords
        options:
            path:
                - robot/MyProject/resources/MyProject.resource
                - robot/MyProject/resources/MyProject.py
            output: robot/MyProject/doc/MyProject_Library.html





You can also use basic filesystem wildcards.

For example, to document all Robot files in robot/MyProject/resources,
configure the path option under tasks__robot_libdoc in the
cumulusci.yml file.

tasks:
    robot_libdoc:
        description: Generates HTML documentation for the MyProject Robot Framework Keywords
        options:
            path: robot/MyProject/resources/*.resource
            output: robot/MyProject/doc/MyProject_Library.html








Using Keywords and Tests from a Different Project

Much like you can use tasks and flows from a different project, you can also use keywords and tests from other
projects. The keywords are brought into your repository the same way as
with tasks and flows, via the sources configuration option in the
cumulusci.yml file. However, keywords and tests require extra
configuration before they can be used.


Note

This feature isn’t for general purpose sharing of keywords between
multiple projects. It was designed specifically for the case where a
product is being built on top of another project and needs access to
product-specific keywords.




Using Keywords

In order to use the resources from another project, you must first
configure the robot task to use one of the sources that have been
defined for the project. To do this, add a sources option under the
robot task, and add to it the name of an imported source.

For exmple, if your project is built on top of NPSP, and you want to use
keywords from the NPSP project, first add the NPSP repository as a
source in the project’s cumulusci.yml file:

sources:
    npsp:
        github: https://github.com/SalesforceFoundation/NPSP
        release: latest_beta





Then add npsp under the sources option for the robot task. This is
because the project as a whole can use tasks or flows from multiple
projects, but robot only needs keywords from a single project.

tasks:
    robot:
        options:
            sources:
                - npsp





When the robot task runs, it adds the directory that contains the code
for the other repository to PYTHONPATH, which Robot uses when
resolving references to libraries and keyword files.

Once this configuration has been saved, you can import the resources as
if you were in the NPSP repository.

For example, in a project which has been configured to use NPSP as a
source, the NPSP.robot file can be imported into a test suite.

*** Settings ***
Resource   robot/Cumulus/resources/NPSP.robot






Note

Even with proper configuration, some keywords or keyword libraries might
not be usable. Be careful to avoid using files that have the exact same
name in multiple repositories.






Running Tests

Running a test from another project requires prefixing the path to the
test with the source name. The path needs to be relative to the root of
the other repo.

For example, starting from the previous example, to run the
create_organization.robot test suite from NPSP:

$ cci task run robot --suites npsp:robot/Cumulus/tests/browser/contacts_accounts/create_organization.robot













            

          

      

      

    

  

  
    
    
    Robot Tutorial
    

    
 
  

    
      
          
            
  
Robot Tutorial

This tutorial will step you through writing your first test, then
enhancing that test with a custom keyword implemented as a page object.
It is not a comprehensive tutorial on using Robot Framework. For Robot
Framework documentation see the Robot Framework User
Guide [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html]

It is assumed you’ve worked through the CumulusCI Get Started section at least up to the point where you’ve called cci project init. It is also assumed that
you’ve read the Acceptance Testing with Robot Framework section of this document, which gives an overview of CumulusCI and Robot Framework integration.


Part 1: Folder Structure

We recommend that all Robot tests, keywords, data, and log and report
files live under a folder named robot, at the root of your repository.
If you worked through the Get Started section, the following folders will have been created under
MyProject/robot/MyProject:


	doc - a place to put documentation for your tests


	resources - a place to put Robot libraries and keyword files that
are unique to your project


	results - a place for Robot to write its log and report files


	tests - a place for all of your tests.







Part 2: Creating a custom object

For this tutorial we’re going to use a Custom Object named MyObject
(e.g. MyObject__c). In addition, we need a Custom Tab that is
associated with that object.

If you want to run the tests and keywords in this tutorial verbatim, you
will need to go to Setup and create the following:


	A Custom Object with the name MyObject.


	A Custom Tab associated with this object.







Part 3: Creating and running your first Robot test

The first thing we want to do is create a test that verifies we can get
to the listing page of the Custom Object. This will let us know that
everything is configured properly.

Open up your favorite editor and create a file named MyObject.robot in
the folder robot/MyProject/tests. Copy and paste the following into
this file, and then save it.

*** Settings ***
Resource  cumulusci/robotframework/Salesforce.robot
Library   cumulusci.robotframework.PageObjects

Suite Setup     Open test browser
Suite Teardown  Delete records and close browser

*** Test Cases ***
Test the MyObject listing page
    Go to page  Listing  MyObject__c
    Current page should be  Listing  MyObject__c






Note

The above code uses Go to page and Current page should be, which
accept a page type (Listing) and object name (MyObject__c). Even
though we have yet to create that page object, the keywords will work by
using a generic implementation. Later, once we’ve created the page
object, the test will start using our implementation.



To run just this test, run the following command at the prompt:

$ cci task run robot -o suites robot/MyProject/tests/MyObject.robot --org dev





If everything is set up correctly, you should see the output that looks
similar to this:

$ cci task run robot -o suites robot/MyProject/tests/MyObject.robot --org dev
2019-05-21 17:29:25: Getting scratch org info from Salesforce DX
2019-05-21 17:29:29: Beginning task: Robot
2019-05-21 17:29:29:        As user: test-wftmq9afc3ud@example.com
2019-05-21 17:29:29:         In org: 00Df0000003cuDx
2019-05-21 17:29:29:
==============================================================================
MyObject
==============================================================================
Test the MyObject listing page                                        | PASS |
------------------------------------------------------------------------------
MyObject                                                              | PASS |
1 critical test, 1 passed, 0 failed
1 test total, 1 passed, 0 failed
==============================================================================
Output:  /Users/boakley/dev/MyProject/robot/MyProject/results/output.xml
Log:     /Users/boakley/dev/MyProject/robot/MyProject/results/log.html
Report:  /Users/boakley/dev/MyProject/robot/MyProject/results/report.html








Part 4: Creating a page object

Most projects are going to need to write custom keywords that are unique
to that project. For example, NPSP has a keyword for filling in a batch
gift entry form, EDA has a keyword with some custom logic for validating
and affiliated contact, and so on.

The best way to create and organize these keywords is to place them in
page object libraries. These libraries contain normal Python classes and
methods which have been decorated with the pageobjects decorator
provided by CumulusCI. By using page objects, you can write keywords
that are unique to a given page, making them easier to find and easier
to manage.


Defining the class

CumulusCI provides the base classes that are a good starting point for
your page object (see Page Object Base Classes). In this case we’re writing a keyword that works on the
listing page, so we want our class to inherit from the ListingPage
class.


Note

Our class also needs to use the pageobject decorator, so we must
import that along with the ListingPage class.



To get started, create a new file named MyObjectPages.py in the folder
robot/MyProject/resources. At the top of the new keyword file, add the
following import statement:

from cumulusci.robotframework.pageobjects import pageobject, ListingPage





Next we can create the class definition by adding the following two
lines:

@pageobject(page_type="Listing", object_name="MyObject__c")
class MyObjectListingPage(ListingPage):





The first line registers this class as a page object for a listing page
for the object MyObject__c. The second line begins the class
definition.




Creating the keyword

At this point, all we need to do to create the keyword is to create a
method on this object. The method name should be all lowercase, with
underscores instead of spaces. When called from a Robot test, the case
is ignored and all spaces are converted to underscores.

In this case we want to create a method named
click_on_the_row_with_name. All we want it to do is to find a link
with the given name, click on the link, and then wait for the new page
to load. To make the code more bulletproof, it will use a keyword from
SeleniumLibrary to wait until the page contains the link before
clicking on it. While probably not strictly necessary on this page,
waiting for elements before interacting with them is a good habit to get
into.

Add the following under the class definition:

def click_on_the_row_with_name(self, name):
    xpath='xpath://a[@title="{}"]'.format(name)
    self.selenium.wait_until_page_contains_element(xpath)
    self.selenium.click_link(xpath)
    self.salesforce.wait_until_loading_is_complete()





Notice that the above code is able to use the built-in properties
self.selenium and self.salesforce to directly call keywords in the
SeleniumLibrary and Salesforce keyword libraries.




Putting it all together

After adding all of the above code, our file should now look like this:

from cumulusci.robotframework.pageobjects import pageobject, ListingPage


@pageobject(page_type="Listing", object_name="MyObject__c")
class MyObjectListingPage(ListingPage):
    def click_on_the_row_with_name(self, name):
        xpath='xpath://a[@title="{}"]'.format(name)
        self.selenium.wait_until_page_contains_element(xpath)
        self.selenium.click_link(xpath)
        self.salesforce.wait_until_loading_is_complete()





We now need to import this page object into our tests. In the first
iteration of the test, we imported
cumulusci.robotframework.PageObjects, which provided our test with
keywords such as Go to page and Current page should be. In addition
to being the source of these keywords, it is also the way to import page
object files into a test case.

To import a file with one or more page objects you need to supply the
path to the page object file as an argument when importing
PageObjects. The easiest way is to use Robot’s continuation
characters ... on a separate line.

Modify the import statements at the top of MyObject.robot to look like
the following:

*** Settings ***
Resource  cumulusci/robotframework/Salesforce.robot
Library   cumulusci.robotframework.PageObjects
...  robot/MyProject/resources/MyObjectPages.py





This will import the page object definitions into the test case, but the
keywords won’t be available until the page object is loaded. Page
objects are loaded automatically when you call Go to page, or you can
explicitly load them with Load page object. In both cases, the first
argument is the page type (eg: [Listing]{.title-ref},
[Home]{.title-ref}, etc) and the second argument is the object name (eg:
MyObject__c).

Our test is already using Go to page, so our keyword should already be
available to us once we’ve gone to that page.






Part 5: Adding test data

We want to be able to test that when we click on one of our custom
objects on the listing page that it will take us to the detail page for
that object. To do that, our test needs some test data. While that can
be very complicated in a real-world scenario, for simple tests we can
use the Salesforce API to create test data when the suite first starts
up.

To create the data when the suite starts, we can add a Suite Setup in
the settings section of the test. This takes as an argument the name of
a keyword. In our case we’re going to create a custom keyword right in
the test to add some test data for us.

It is not necessary to do it in a setup. It could be a step in an
individual test case, for example. However, putting it in the
Suite Setup guarantees it will run before any tests in the same file
are run.

Open up MyObject.robot and add the following just before
*** Test Cases ***:

*** Keywords ***
Create test data
    [Documentation]
    ...  Creates a MyObject record named "Leeroy Jenkins"
    ...  if one doesn't exist

    ## Check to see if the record is already in the database,
    ## and return if it already exists
    ${status}  ${result}=  Run keyword and ignore error  Salesforce get  MyObject__c  Name=Leeroy Jenkins
    Return from keyword if  '${status}'=='PASS'

    ## The record didn't exist, so create it
    Log  creating MyObject object with name 'Leeroy Jenkins'  DEBUG
    Salesforce Insert  MyObject__c  Name=Leeroy Jenkins





We also need to modify our Suite Setup to call this keyword in
addition to calling the Open Test Browser keyword. Since Suite Setup
only accepts a single keyword, we can use the built-in keyword
Run keywords to run more than one keyword in the setup.

Change the suite setup to look like the following, again using Robot’s
continuation characters to spread the code across multiple rows for
readability.


Note

It is critical that you use all caps for AND, as that’s the way Robot
knows where one keyword ends and the next begins.



Suite Setup     Run keywords
...  Create test data
...  AND  Open test browser





Notice that our Suite Teardown calls
Delete records and close browser. The records in that keyword
refers to any data records created by Salesforce Insert. This makes it
possible to both create and later clean up temporary data used for a
test.

It is important to note that the suite teardown isn’t guaranteed to run
if you forcibly kill a running Robot test. For that reason, we added a
step in Create test data to check for an existing record before adding
it. If a previous test was interrupted and the record already exists,
there’s no reason to create a new record.




Part 6: Using the new keyword

We are now ready to modify our test to use our new keyword, since we now
have some test data in our database, and the keyword definition in our
page object file.

Once again, edit MyObject.robot to add the following two statements at
the end of our test:

Click on the row with name  Leeroy Jenkins
Current page should be  Detail  MyObject__c





The complete test should now look like this:

*** Settings ***
Resource  cumulusci/robotframework/Salesforce.robot
Library   cumulusci.robotframework.PageObjects
...  robot/MyProject/resources/MyObjectPages.py

Suite Setup     Run keywords
...  Create test data
...  AND  Open test browser
Suite Teardown  Delete records and close browser

*** Keywords ***
Create test data
    [Documentation]  Creates a MyObject record named "Leeroy Jenkins" if one doesn't exist

    ## Check to see if the record is already in the database,
    ## and do nothing if it already exists
    ${status}  ${result}=  Run keyword and ignore error  Salesforce get  MyObject__c  Name=Leeroy Jenkins
    Return from keyword if  '${status}'=='PASS'

    ## The record didn't exist, so create it
    Log  creating MyObject object with name 'Leeroy Jenkins'  DEBUG
    Salesforce Insert  MyObject__c  Name=Leeroy Jenkins

*** Test Cases ***
Test the MyObject listing page
    Go to page  Listing  MyObject__c
    Current page should be  Listing  MyObject__c

    Click on the row with name  Leeroy Jenkins
    Current page should be  Detail  MyObject__c





With everything in place, we should be able to run the test using the
same command as before:

$ cci task run robot -o suites robot/MyProject/tests/MyObject.robot --org dev
2019-05-21 22:02:27: Getting scratch org info from Salesforce DX
2019-05-21 22:02:31: Beginning task: Robot
2019-05-21 22:02:31:        As user: test-wftmq9afc3ud@example.com
2019-05-21 22:02:31:         In org: 00Df0000003cuDx
2019-05-21 22:02:31:
==============================================================================
MyObject
==============================================================================
Test the MyObject listing page                                        | PASS |
------------------------------------------------------------------------------
MyObject                                                              | PASS |
1 critical test, 1 passed, 0 failed
1 test total, 1 passed, 0 failed
==============================================================================
Output:  /Users/boakley/dev/MyProject/robot/MyProject/results/output.xml
Log:     /Users/boakley/dev/MyProject/robot/MyProject/results/log.html
Report:  /Users/boakley/dev/MyProject/robot/MyProject/results/report.html











            

          

      

      

    

  

  
    
    
    Robot Debugger
    

    
 
  

    
      
          
            
  
Robot Debugger

CumulusCI includes a rudimentary Robot debugger which can be enabled by
setting the robot_debug option of the robot task to true. When the
debugger is enabled you can use the
Breakpoint [https://cumulusci.readthedocs.io/en/stable/Keywords.html#Salesforce.Breakpoint] keyword from the
Salesforce
Library [https://cumulusci.readthedocs.io/en/stable/Keywords.html#file-cumulusci.robotframework.Salesforce] keyword
library to pause execution.

Once the Breakpoint keyword is encountered you will be given a prompt
from which you can interactively issue commands.

For the following examples we’ll be using this simple test:

*** Settings ***
Resource  cumulusci/robotframework/Salesforce.robot

Suite Setup     Open test browser
Suite Teardown  Close all browsers

*** Test Cases ***
Example test case
    log  this is step one
    Breakpoint
    log  this is step two
    log  this is step three






Enabling the debugger

To enable the debugger you must set the robot_debug option to true
for the robot task. You should never do this in the project’s
cumulusci.yml file. Doing so could cause tests to block when run on a
CI server such as MetaCI.

Instead, you should set it from the command line when running tests
locally.

For example, assuming you have the example test in a file named
example.robot, you can enable the debugger by running the robot task
like this:

$ cci task run robot --robot_debug true --suites example.robot








Setting breakpoints

The Salesforce keyword library includes a keyword named
[Breakpoint]{.title-ref}. Normally it does nothing. However, once the
debugger is enabled it will cause the test to pause. You will then be
presented with a prompt where you can interactively enter commands.

$ cci task run robot --robot_debug true --suites example.robot
2019-10-01 15:29:01: Getting scratch org info from Salesforce DX
2019-10-01 15:29:05: Beginning task: Robot
2019-10-01 15:29:05:        As user: test-dp7to8ww6fec@example.com
2019-10-01 15:29:05:         In org: 00D0R000000ERx6
2019-10-01 15:29:05:
==============================================================================
Example
==============================================================================
Example test case                                                     .

:::
::: Welcome to rdb, the Robot Framework debugger
:::

Type help or ? to list commands.

> Example.Example test case
-> <Keyword: cumulusci.robotframework.Salesforce.Breakpoint>
rdb>





Note: the Breakpoint keyword has no effect on a test if the
robot_debug option is not set to true. While we don’t encourage you
to leave this keyword in your test cases, it’s safe to do so as long as
you only ever set the robot_debug option when running tests locally.




Getting Help

Whenever you see the debugger prompt rdb>, you can request help by
typing help or ? and pressing return. You will be given a list of
available commands. To get help with a specific command you can type
help followed by the command you want help on.

rdb> help

Documented commands (type help <topic>):
========================================
continue  locate_elements  quit            shell  vars
help      pdb              reset_elements  step   where

rdb> help vars
Print the value of all known variables
rdb>








Examining Variables

There are two ways you can examine the current value of a Robot
variable. The simplest method is to enter the name of a variable at the
prompt and press return. The debugger will show you the value of that
single variable:

rdb> ${BROWSER}
chrome





To see a list of all variables and their values, enter the command
vars.

rdb> vars
┌────────────────────────────────────┬──────────────────────────────────────────────────┐
│ Variable                           │ Value                                            │
├────────────────────────────────────┼──────────────────────────────────────────────────┤
│ ${/}                               │ /                                                │
├────────────────────────────────────┼──────────────────────────────────────────────────┤
│ ${:}                               │ :                                                │
├────────────────────────────────────┼──────────────────────────────────────────────────┤
│ ${BROWSER}                         │ chrome                                           │
├────────────────────────────────────┼──────────────────────────────────────────────────┤
... <more output> ...








Executing Robot keywords

You can execute Robot keywords at the prompt by entering the command
shell (or the shortcut !) followed by the keyword and arguments just
as you would in a test. The following example runs the SeleniumLibrary
keyword Get
Location [http://robotframework.org/SeleniumLibrary/SeleniumLibrary.html#Get%20Location]:

rdb> shell get location
status: PASS
result: https://ability-enterprise-4887-dev-ed.lightning.force.com/lightning/setup/SetupOneHome/home





Notice that the shell command will run the keyword and then report the
status of the keyword and display the return value.

Note: just like in a test, you must separate arguments from keywords by
two or more spaces.




Setting Robot variables

To capture the output of a keyword into a variable, you do it the same
way you would do it in a test: use a variable name, two or more spaces,
then the keyword:

rdb> ! ${loc}  get location
status: PASS
${loc} was set to https://ability-enterprise-4887-dev-ed.lightning.force.com/lightning/setup/SetupOneHome/home
rdb> ${loc}
https://ability-enterprise-4887-dev-ed.lightning.force.com/lightning/setup/SetupOneHome/home





In addition to setting variables from the results of keywords, you can
also set variables with the shell command using the built-in keywords
Set Test
Variable [http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Set%20Test%20Variable],
Set Suite
Variable [http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Set%20Suite%20Variable],
or Set Global
Variable [http://robotframework.org/robotframework/latest/libraries/BuiltIn.html#Set%20Global%20Variable].

rdb> ! set test variable  ${message}  hello, world
status: PASS
result: None
rdb> ${message}
hello, world








Locating elements on the web page

One of the most powerful features of the debugger is the ability to
locate elements on the screen. This makes it easy to experiment with
xpaths or other types of locators.

In the following example, we want to find all items on the page that
contain the title “Learn More”:

rdb> locate_elements  //button[@title='Learn More']
Found 1 matches





The elements will be highlighted with a yellow border:

[image: image]

To remove the highlighting you can use the debugger command
reset_elements




Step through the test

The debugger allows you to step through a test one keyword at a time.
From the rdb prompt, enter the command step to continue to the next
step in the test.

rdb> step
.

> Example.Example test case
-> <Keyword: BuiltIn.Log  this is step two>





The last two lines help to give context. It is showing that you are
currently right before the keyword BuiltIn.Log this is step 2. To get
a full stack you can issue the command where

rdb> where
0: -> Example
1:   -> Example.Example test case
2:     -> BuiltIn.Log








Continuing or quitting the test

To let the test continue to the end, or to the next Breakpoint
keyword, issue the command continue. To stop execution gracefully (ie:
allow all test and suite teardowns to run), issue the command quit.







            

          

      

      

    

  

  
    
    
    Playwright Technology Preview
    

    
 
  

    
      
          
            
  
Playwright Technology Preview

Since its inception, CumulusCI has relied on Selenium to provide the
foundation of our browser automation keywords.

In 2020, Microsoft introduced a new browser automation tool named
Playwright [https://playwright.dev/]. Playwright is a ground-up
reinvention of a browser automation library that aims to address several
shortcomings of Selenium. For example, Playwright has built-in support
for waiting for elements to appear, for working with the shadow DOM,
video capture of a testing session, and so on.

In 2021 the Robot Framework project introduced the
Browser [https://robotframework-browser.org/] library which adds
keywords that use the Playwright API.

Starting with CumulusCI version 3.59.0, we are providing experimental
support for Playwright and the Browser library in CumulusCI.

In CumulusCI 3.60, we’ve reorganized our keywords so that a test can
import the API and performance keywords without importing Selenium
keywords. To use Playwright-based keywords, import the resource file
SalesforcePlaywright.robot [https://cumulusci.readthedocs.io/en/stable/Keywords.html#file-cumulusci/robotframework/SalesforcePlaywright.robot],
which imports the non-Selenium keywords along with the keywords in the
SalesforcePlaywright
library [https://cumulusci.readthedocs.io/en/stable/Keywords.html#file-cumulusci.robotframework.SalesforcePlaywright].


Installation

We have not yet bundled Playwright and the Browser library with
CumulusCI. However, we have provided a script to make it easy to install
or uninstall Playwright and the Browser library while we continue to
work on fully supporting it.


Step 1: Install Node.js

Playwright is based on Node.js. If you don’t already have Node.js
installed, you can find a Node.js installer for your platform on the
Node.js downloads page [https://nodejs.org/en/download/].

::: warning
::: title
Warning
:::

You must have Node.js installed before continuing with these
instructions.
:::

Step 2: Run the Playwright installation command
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Installing the browser library requires a couple of manual steps, which
we’ve automated in a single script. This script does three things:


	it verifies that Node.js has been installed


	it downloads and installs the Browser keyword library


	it downloads and installs the Node.js modules and drivers for
playwright.




::: note
::: title
Note
:::

The installation of Playwright contains drivers for all supported
browsers, so there’s no need to manually install drivers such as
ChromeDriver. It works right out of the box!
:::

Before you run the script, make sure your working directory is at the
root of your repository. You can then run the script with the following
command:

$ cci robot install_playwright





::: tip
::: title
Tip
:::

You can use the --dry_run (or -n) option to see what the command
will do without actually installing anything.
:::






Running an example test

As mentioned earlier, this is an experimental release of Playwright
integration, so any CumulusCI keywords that rely on Selenium won’t
work. However, the following example shows how easy it can be to write
Playwright-based tests with off-the-shelf keywords provided by the
Browser
library [https://marketsquare.github.io/robotframework-browser/Browser.html]

To initialize Playwright support in a test suite, import the
SalesforcePlaywright.robot resource file as shown in the following
example. It imports the Browser library and defines the keywords
Open Test Browser and Delete records and close browser.

*** Settings ***
Resource     cumulusci/robotframework/SalesforcePlaywright.robot

Suite Setup      Open test browser
Suite Teardown   Delete records and close browser

*** Test Cases ***

Go to user profile
    Click    button:has-text("View profile")
    Click    .profile-card-name .profile-link-label

    Wait until network is idle
    Take screenshot

Go to contacts home
    Click            button:has-text("App Launcher")
    Fill text        input[placeholder='Search apps and items...']  Contacts
    Click            one-app-launcher-menu-item:has-text("Contacts")

    Wait until network is idle
    Take screenshot





To run the test, save the above code in a .robot file (e.g.
example.robot) and then run it with the standard robot task:

$ cci task run robot --suites example.robot






Things to Notice

This example test is unable to use any of the existing Selenium-based
keywords, except for two. We’ve created a new library based on
Playwright and the Browser library with two keywords that are similar to
existing keywords: Open Test
Browser [https://cumulusci.readthedocs.io/en/stable/Keywords.html#SalesforcePlaywright.Open%20Test%20Browser] and
Delete Records and Close
Browser [https://cumulusci.readthedocs.io/en/stable/Keywords.html#SalesforcePlaywright.Delete%20Records%20And%20Close%20Browser]

This test also uses the Browser keyword Wait until network is
idle [https://marketsquare.github.io/robotframework-browser/Browser.html#Wait%20Until%20Network%20Is%20Idle]
before taking a screenshot. This is a keyword that waits for there to be
at least one instance of 500ms of no network traffic on the page after
it starts to load. This seems to be more reliable and easier to use
method than waiting for a page-specific element to appear.

This test has no explicit waits for the buttons and links that it clicks
on. The underlying Playwright engine automatically waits for elements,
so there should almost never be a need for keywords such as
Wait until page contains element or Wait until element is enabled.

Finally, notice how easy it is to interact with both the app menu and
the user profile. Playwright locators are often much easier to write
than Selenium locators, which translates to tests and keywords that
don’t have to be tweaked when the page markup changes.






Summary

This is just a preview of things to come. The CumulusCI team will be
spending more time evaluating Playwright, with an eye toward making it a
viable and more robust replacement for Selenium.




Resources


	Browser Library Home Page [https://robotframework-browser.org/]


	Browser Library Keyword
Documentation [https://marketsquare.github.io/robotframework-browser/Browser.html]


	Playwright Home Page [https://playwright.dev]










            

          

      

      

    

  

  
    
    
    Continuous Integration
    

    
 
  

    
      
          
            
  
Continuous Integration

The “CI” in CumulusCI stands for “continuous integration”.
Continuous integration is the practice of automatically running a
project’s tests for any change before merging that change to the main
branch in the repository. Continuous integration also configures the
repository so that changes are merged only if the tests have passed.
This practice keeps the main branch in an error-free state where it
can be released any time.

Teams can create bespoke automation for CumulusCI tailored to their
project’s needs. Once created, the automation is available to all
project participants, from developers and quality engineers, to
documentation writers and product managers. CumulusCI takes this reuse
of automation one step further by letting it run in the context of CI
systems like GitHub Actions, CircleCI, or Azure Pipelines. This
consistent reuse of automation from local environments to cloud-based CI
systems gives teams the ability to develop, test, and deploy their
projects with confidence.


CumulusCI Flow

CumulusCI Flow is the process by which Salesforce metadata is developed,
tested, and deployed to our customers. It is similar to GitHub Flow,
with a few tweaks and additions.

To learn which CumulusCI flows are best designed for creating scratch
orgs, running CI builds, managing the development process, and more, see
CumulusCI Flow.




CumulusCI in GitHub Actions

GitHub Actions specify custom workflows that run directly in your GitHub
repository. These workflows perform a variety of tasks, such as running
test suites, performing linting checks on code, and creating code
coverage reports. CumulusCI can also execute flows in GitHub Actions,
making it possible to run scratch org builds and execute Apex and Robot
Framework tests that leverage the custom automation defined in
cumulusci.yml.

We offer a comprehensive framework for using CumulusCI in GitHub Actions.




Other CI Systems and Servers

CumulusCI runs on top of virtually any containerized CI platform.
Running CumulusCI in these contexts requires configuring environment
variables to provide access to orgs and services in a headless context.




Testing with Second-Generation Packaging

CumulusCI makes it easy to harness the power of second-generation
managed packages to implement an advanced, comprehensive testing process
for both first- and second-generation managed package products. This is
described in Testing with Second-Generation Packaging.




Further Reading



	CumulusCI Flow

	Run CumulusCI from GitHub Actions

	Testing with Second-Generation Packaging

	Run CumulusCI Headlessly











            

          

      

      

    

  

  
    
    
    CumulusCI Flow
    

    
 
  

    
      
          
            
  
CumulusCI Flow

CumulusCI Flow is the process that Salesforce.org uses to develop, test,
and release our products. This process encompasses both a development
and testing philosophy as well as a specific GitHub branching structure.
There are several key reasons we like using CumulusCI Flow:


	Everything is done in scratch orgs to eliminate “state drift” that
occurs over time in persistent orgs. The only persistent org in this
process is the packaging org or production org.


	Changes to branches that are being actively developed are thoroughly
tested on each commit.


	For managed package projects, a new beta version of the package is
created and tested for each commit on a project’s main branch.


	Auto-merging functionality keeps branches up-to-date with the main
branch.




CumulusCI Flow is implemented in the standard library flows provided by
CumulusCI, but the approach to working with a GitHub repository does not
require the use of CumulusCI.

[image: Salesforce.org Dev/Release Process Diagram]


Project Considerations

CumulusCI Flow was designed for use with Salesforce development
projects, which inject some unique considerations into finding the right
branching model:


	You cannot re-cut a Salesforce first-generation managed package
release with the same version as a prior release. As a result, Git
Tags are the best representation of our releases in a repository
since they are a read only reference to the exact code we put into a
given release.


	Releasing managed packages has some overhead involved including
manual checks by release managers to ensure nothing gets permanently
locked into the package in a release. As a result, true continuous
delivery isn’t an option. Whether you’re on a team that wants to
deliver quickly (e.g. a two week sprint cycle) or at team that makes
several larger releases a year, CumulusCI offers functionality to
help cut releases for all products with any changes.







Main Builds

The main goal of the CumulusCI Flow is to always have the main branch
ready to release. This way, we can merge a fix and cut an emergency
release at any time in the development process.

To test that we can package main, we upload a beta release on every
commit to main and then test that beta release in a variety of
Salesforce org environments concurrently. A passing build is proof we
can package main at any point in time.

When the upload of the beta release is completed, the main branch is
auto-merged into all open
feature branches. New betas are published on GitHub as a GitHub Release,
along with automatically generated release notes drawn from the content
of the Pull Requests merged since the last production release.


CumulusCI and Main Builds

There are three main flows that facilitate main builds:


	ci_master: Deploys the main branch and all dependencies into the
packaging org including incrementally deleting any metadata removed
since the previous deployment. The end result is to prepare the
packaging org to upload a new version.


	release_beta: Uploads a beta release of the code staged in the
packaging org, creates a GitHub Tag and Release, generates release
notes, adds them to the release, and merges main into all feature
branches.


	ci_beta: Installs the beta and all dependencies into a fresh
scratch org and runs the Apex tests.







CumulusCI and Tag Naming

CumulusCI Flow uses two different tag prefixes for differentiating
between beta and production releases of a managed package. The default
prefix values for tags are beta/ and release/.


	Example beta release tag: beta/1.2-Beta_3


	Example production release tag: release/1.2




By differentiating beta and release tags, we allow tooling to query for
the latest beta and the latest production release of each repository.

To change the default prefix values see Branch Configuration.






Feature Branches

Like GitHub Flow, CumulusCI Flow uses a simple main/feature branch
model. The main branch is the only permanent branch in the repository.
All development work (features and bug fixes) is done in feature
branches prefixed with feature/. All commits on all feature branches
are tested concurrently via continuous integration, such as MetaCI or
another solution.

Once a developer is done with a feature branch, they create a Pull
Request to merge their branch into the main branch. The Pull Review
serves as the container for the following:


	Code Review: We use GitHub’s built in review functionality for
Pull Requests to conduct line by line code reviews


	Release Notes: We use the Pull Request body to create release
notes content relevant to the PR. This content is automatically
parsed by CumulusCI’s release notes generation task to
automatically build cumulative release notes on each release.


	QA: The goal of the Pull Request is to serve as a gate blocking
a change from going into main until it’s ready to release. As a
result, we do QA on the feature before merging the Pull Request.




When a Pull Request is approved and passing build, it is merged using
the Merge button in GitHub’s web interface. We use GitHub Protected
Branches to enforce both code reviews and passing builds before a Pull
Request can be merged to main.

Once the Pull Request is merged, the feature branch is deleted.


Feature Branch Flows

CumulusCI facilitates working with feature branches (mainly) through two
default flows:


	dev_org: Used to deploy the unmanaged code and all dependencies
from the feature branch into a Salesforce org to create a usable
development environment.


	ci_feature: Deploys the unmanaged code and all dependencies into a
Salesforce org (typically a fresh scratch org) and run the Apex
tests. This flow is run by a CI app on new commits to any feature
branch.









Release Branches

Some teams deliver large releases several times a year. For this type of
release cadence, Salesforce.org uses a special type of branch referred
to as a release branch. Release branches are simply a feature branch
named with a number. These long-lived branches are created off of the
main branch, serve as the target branch for all features associated
with that release and are eventually merged back to the main branch
when a release occurs. To be able to clearly track what work is
associated with a specific release, release branches must fulfill these
criteria:


	They are the parent branches of all feature work associated with a
release. That is, all feature branches associated with a release are
child branches of the target release branch.


	Release branches use a strict naming format: feature/release_num
where release_num is a valid integer.




Using the feature/ branch prefix for the release branch names allow
those branches to stay in sync with the main branch. Like any other
feature branch, they participate in CumulusCI’s parent-to-child merge
operations. The release number immediately after the feature/ prefix
allows CumulusCI to detect and merge changes from one release branch to
other future release branches. See Release to (Future) Release
Merges for more information.

An example of a release branch with two items of work associated with it
could look like this:


	feature/001


	feature/001__feature1


	feature/001__feature2







Branch Configuration

The name of the main (default) branch, as well as the branch prefixes
are configurable in your projects cumulusci.yml file. The following
shows the default values that CumulusCI comes with:

project:
    git:
        default_branch: main
        prefix_feature: feature/
        prefix_beta: beta/
        prefix_release: release/





These values can be changed to match naming conventions used by your own
project.




Auto Merging

CumulusCI Flow helps to keep large diffs and merge conflicts from being
the norm. CumulusCI’s auto-merge functionality helps teams:


	Keep feature branches up-to-date with the main branch (main to
feature merges)


	Manage long-lived feature branches for larger features worked on by
multiple developers (parent to child merges)


	Manage large releases that occur several times a year (release to
future release merges).





Main to Feature Merges

One of the bigger differences between CumulusCI Flow and GitHub Flow or
git-flow is that CumulusCI Flow automates the merging of commits to a
project’s main branch into all open feature branches. This auto-merge
does a lot for us:


	Ensures feature branches are in sync with the main branch.


	Re-tests each feature branch with any changes to main since the
merge generates a new commit.


	Eliminates merge conflicts when merging a Pull Request to main.




To understand the benefit of auto-merging to feature branches, consider
the following scenario: A developer starts work on a feature branch,
puts in a few weeks on it, and then has to leave unexpectedly for a few
months. While they are on leave, their feature branch gets automatically
updated with any new commits on main and rebuilt. A few weeks into their
leave, a new commit on main gets merged to their feature branch and
breaks the build. When the developer returns after their leave, they can
look at the build history to find which commit from main broke their
feature branch.

Without auto-merging, the developer would return, merge main into their
feature branch, and then have to sift through all the commits to main
during their leave to figure out which one broke their feature branch.
More testing and build history is always a good thing in addition to the
other benefits we gain from auto-merging.

CumulusCI facilitates the auto-merge to feature branches via the
github_automerge_main task, which is included by default in the
release_beta flow. The release_beta flow is run, in CumulusCI Flow,
on new commits to the main branch.




Parent to Child Merges

There is sometimes a need for multiple developers to collaborate on
different parts of a single larger feature. To enable this collaboration
CumulusCI expands the concept of auto-merging main-to-feature branches
to also handle the concept of Parent and Child Feature Branches.

Parent/Child feature branches are created using a simple naming format:


	Parent: feature/parent-branch-name


	Child: feature/parent-branch-name__child-branch-name




A child branch extends the parent’s name with two additional
underscores (__) and an additional description.

Auto-merging from parent to child branches works as follows:


	Child branches never receive the auto-merge from main


	Parent branches do receive the merge from main which kicks off a
Feature Test build. (This assumes the parent branch is not itself a
child.)


	At the end of a successful Feature Test build on a Parent branch,
the parent branch is auto-merged into all child branches




This allows us to support multiple developers working on a single large
feature while keeping that feature isolated from main until we’re ready
to release it. The parent branch is the branch representing the overall
feature. Each developer can create child branches for individual
components of the larger feature. Their child branch still gets CI
builds like all feature branches. When they are ready to merge from
their child branch to the parent branch, they create a Pull Request
which gets code reviewed by other developers working on the parent
feature branch and finally merged to the parent branch.

CumulusCI facilitates parent to child auto-merges via the
github_automerge_feature task, which is included by
default in the ci_feature flow. If a parent feature branch
passes the build, it is automatically merged into all child branches.

The parent to child merge functionality works across multiple levels
of branching. The effects of automerging remains the same, with children
only receiving merges from their parents only (e.g. no merges from
grandparents) This allows us to have branching structures such as:


	main


	feature/large-feature


	feature/large-feature__section1


	feature/large-feature__section1__work-item1


	feature/large-feature__section1__work-item2


	feature/large-feature__section2


	feature/large-feature__section2__work-item1




In this scenario, a commit to the main branch triggers the
github_automerge_main task to run and will automerge that commit into
feature/large-feature. This triggers a build to run against
feature/large-feature, and assuming the build passes, runs the
github_automerge_feature task. This task detects two child branches of
feature/large-feature: feature/large_feature__section1 and
feature/large-feature__section2. The task automerges the commit from
the parent, into the child branches, and builds begin to run against
those branches. If the build for feature/large-feature__section1
fails, it doest not trigger github_automerge_feature to merge to its
child branches. This means that despite
feature/large-feature__section1 having two child branches, they would
not receive automerges until the parent branch tests successfully.




Release to (Future) Release Merges

Because release branches are so long-lived, and so much work goes into
them, their diffs can get quite large. This means headaches are
inevitable the day after a major release, and you need to pull down all
of the changes from the new release into the next release branch (which
has likely been in development for months already). To alleviate this
pain point, CumulusCI can ensure that all release branches propagate
commits they receive to other existing release branches that correspond
to future releases.

Consider the following branches in a GitHub repository:


	main - Source of Truth for Production


	feature/002 - The next major production release


	feature/002__feature1 - A single feature associated with release
002


	feature/002__large_feature - A large feature associated with
release 002


	feature/002__large_feature__child1 - First chunk of work for the
large feature


	feature/002__large_feature__child2 - Second chunk of work for the
large feature


	feature/003 - The release that comes after 002


	feature/003__feature1 - A single feature associated with release
003




In this scenario, CumulusCI ensures that when feature/002 receives a
commit, that that commit is also merged into feature/003. This kicks
off tests in our CI system and ensures that functionality going into
feature/002 doesn’t break work being done for future releases. Once
those tests pass, the commit on feature/003 is merged to
feature/003__feature1 because they adhere to the parent/child naming
convention described above. Commits never propagate in the opposite
direction. (A commit to feature/002 would never be merged to
feature/001 if it was an existing branch in the GitHub repository).

Propagating commits to future release branches is turned off by
default. If you would like to enable this feature for your GitHub
repository, you can set the update_future_releases option on the
github_automerge_feature task in your cumulusci.yml file:

tasks:
    github_automerge_feature:
    options:
        update_future_releases: True








Orphan Branches

If you have both a parent and a child branch, and the parent is deleted,
this creates an orphaned branch. Orphaned branches do not receive any
auto-merges from any branches. You can rename an orphaned branch to
include the feature/ prefix and contain no double underscores
(‘__’) to begin receiving merges from the main branch again.

If we have a parent and child branch: feature/myFeature and
feature/myFeature__child, and feature/myFeature (the parent) is
deleted, then feature/myFeature__child would be considered an orphan.
Renaming feature/myFeature__child to feature/child will allow the
orphan to begin receiving automerges from the main branch.






CumulusCI Flow vs. GitHub Flow

Since CumulusCI Flow is largely an extension of GitHub Flow, the
differences are mostly additional processes in CumulusCI Flow that help
make it more effective for large-scale Salesforce projects:


	Feature branches must be prefixed feature/ or they don’t get built
or receive auto-merges. This allows developers to have experimental
branches that don’t get built or merged.


	CumulusCI Flow is focused on an agile release process that works
well with the technical constraints of Salesforce packaging..


	CumulusCI Flow requires the beta and release tag naming convention
so tooling can use the GitHub API to determine the latest beta and
the latest production release.


	CumulusCI Flow utilizes parent/child branch relationships and
performs auto-merging of commits between branches, where as GitHub
flow does not.







CumulusCI Flow vs git-flow

When our team first started figuring out our development/release
process, we started where most people do in looking at git-flow. Unlike
both CumulusCI Flow and GitHub Flow, git-flow uses multiple permanent
branches to separate development work from releases. We decided to go
with a main/feature branching model instead of git-flow for a few
reasons:


	We only cut and release new releases. We never patch old releases
which makes the complexity of git-flow less necessary.


	git-flow is not natively supported in git or GitHub. Using git-flow
effectively usually requires extending your git tooling to enforce
structure and merging rules for a more complex branching model.


	The main reason for git-flow is to be able to integrate your
features together. We get this, along with many other benefits,
already from auto-merging main to feature branches.


	Feature branches provide better isolation necessary for a rapid,
agile release cycle by keeping all features not ready for release
out of the release. Doing testing in the development branch means
you’ve already integrated your features together. If one feature is
bad, it is harder to unwind that feature from the development branch
than if it were still isolated in its feature branch, tested there,
and only merged when truly ready. Plus, with the auto-merge of main,
we get the same integration as a development branch.


	In short, auto-merging and parent/child feature branches in
CumulusCI Flow provide us everything we would want from git-flow in
a simpler branching model.










            

          

      

      

    

  

  
    
    
    Run CumulusCI from GitHub Actions
    

    
 
  

    
      
          
            
  
Run CumulusCI from GitHub Actions

CumulusCI can be used to run continuous integration builds with GitHub
Actions. In order to follow along, you should already have a repository
that is hosted on GitHub and configured as a CumulusCI project. In other
words, we’re assuming your project already has a cumulusci.yml and
that you are successfully running CumulusCI flows locally.

There is also a template
repository [https://github.com/SFDO-Tooling/CumulusCI-CI-Demo] that is
setup to run CumulusCI Flow with our GitHub
Actions framework. This repository can be used as a starting point for
implementing your own project or as a reference for the following
material.


Note

GitHub Actions are free for open source (public) repositories. Check
with GitHub about pricing for private repositories.




Actions Framework

Our GitHub Actions framework lets you choose how much customization you wish to perform versus how much out-of-the-box functionality you’d like to use.
Applications that use our predefined workflows can get started by simply copying and pasting an example file into the repository. Applications that
prefer deep customization or do not use CumulusCI Flow can easily compose our building-block Actions to suit their specific needs.


Reusable Workflows

At the highest tier of abstraction, your application can consume reusable workflows from cumulus-actions/standard-workflows. These workflows offer easy onboarding and don’t require any customization of the YAML to create a complete pipeline for a 1GP or 2GP project. The standard workflows include definitions of dependencies between jobs, ensuring that (for example) a Beta Test job runs after an Upload Beta job.

We recommend cloning the cumulus-actions/standard-workflows repository and pushing it into your org. (Do not fork the repository; GitHub Actions currently does not consume reusable workflows from a fork). This repository is a central control console for all of your applications using the shared workflows, making it easy to introduce (for example) new feature test-level jobs across all repos without individually updating those repos’ configurations. We reserve the right to change cumulus-actions/standard-workflows at any time without notice and without tagging a new version to support this control-console use case; this is the reason we encourage cloning the repository to support your own standard workflow usage.

We provide the following standard workflows:

Packaging Workflows


	beta-1gp, expected to run on the main branch, executes Release Beta (1GP) followed by Beta Test.


	production-1gp, expected to run on the main branch, executes Release Production (1GP) followed by Release Test.


	beta-2gp, expected to run on the main branch, executes Release Beta (2GP) followed by Beta Test.


	production-2gp, expected to run on the main branch, executes Release Production (2GP) followed by Release Test.




Feature Testing Workflows

Because there is wide variance in the types of tests run in feature-level testing, we provide a number of Feature Test workflows
that combine different jobs. All of these workflows are expected to run on feature/** branches. Note that references to 2GP below
are part of the Testing with Second-Generation Packaging process, and can be used on both first- and second-generation package projects.


	feature runs unmanaged feature-test builds: Feature Test.


	feature-with-robot adds a Robot Framework test job to feature.


	feature-2gp runs unmanaged and 2GP feature-test package builds: Feature Test, Build Feature Test Package, Feature Test - 2GP.


	feature-2gp-with-robot adds a 2GP Robot Framework test job to feature-2gp.


	feature-namespaced runs unmanaged and namespaced-org tests: Feature Test and Feature Test - Namespaced.




To consume a standard workflow, follow these steps.


	Clone the cumulus-actions/standard-workflows repo. Don’t use a fork!


	Select one or more reusable workflows you want to consume.


	For each workflow, create a file in your repository under .github/workflows. Design your own
triggers, or copy from the examples below.


	Commit the file and merge a Pull Request to your main branch.




Example 1: Feature Test workflow

This workflow runs on feature branches before merging.

name: Feature Test
on:
    push:
        branches:
            # Customize as needed for your project's branching structure.
            - feature/**
            - main
jobs:
    feature-test:
        name: "Feature Test"
        # Replace this URL with your forked repo.
        # Use the feature test workflow that matches your project needs.
        uses: cumulus-actions/standard-workflows/.github/workflows/feature-2gp.yml@main
        secrets:
            dev-hub-auth-url: "${{ secrets.DEV_HUB_AUTH_URL }}"





Example 2: Upload Beta workflow

This workflow runs on every main-branch commit to upload a beta package release.

name: Upload Beta Release
on:
    push:
        branches:
            - "main"
jobs:
    upload-beta:
        # Replace this URL with your forked repo.
        # Use the `beta-2gp` workflow if this is a 2GP project.
        uses: SFDO-Community/standard-workflows/.github/workflows/beta-1gp.yml@main
        secrets:
            # If this is a 2GP project, omit the packaging org auth URL.
            packaging-org-auth-url: "${{ secrets.PACKAGING_ORG_AUTH_URL }}"
            dev-hub-auth-url: "${{ secrets.DEV_HUB_AUTH_URL }}"





Example 3: Upload Release workflow

name: Upload Production Release
on:
    workflow_dispatch:
jobs:
    upload-production-release:
        name: "Upload Production Release"
        # Replace this URL with your forked repo.
        # Use the `beta-2gp` workflow if this is a 2GP project.
        uses: SFDO-Community/standard-workflows/.github/workflows/production-1gp.yml@main
        secrets:
            # If this is a 2GP project, omit the packaging org auth URL.
            packaging-org-auth-url: "${{ secrets.PACKAGING_ORG_AUTH_URL }}"
            dev-hub-auth-url: "${{ secrets.DEV_HUB_AUTH_URL }}"





You can choose whether or not to pin to a version tag in your cloned standard-workflows repo. In many use cases, it makes the most sense not to do so, as we do here by referencing @main. This allows you to use your standard-workflows repo as a central control console to instantly update workflow definitions across repos. For example, when prerelease scratch orgs are made available in advance of each major Salesforce release, you can add a feature-test-prerelease job to your standard feature workflows - enabling it for all of your projects without individually updating their repos.




Job-Based Actions

If you prefer to construct your own workflows, you can consume our job-based Actions as building blocks. Each job-based Action will set up
the CumulusCI and SFDX CLIs, authorize a Dev Hub and/or packaging org, check out the project, and run one or more Cumulus flows and tasks.


	cumulus-actions/release-beta-1gp runs the flows ci_master and release_beta.


	cumulus-actions/release-beta-2gp runs the flow release_beta_2gp.


	cumulus-actions/beta-test runs the flow ci_beta.


	cumulus-actions/release-production-1gp runs the flows ci_master and release_production.


	cumulus-actions/release-production-2gp runs the flow release_production_2gp.


	cumulus-actions/release-test runs the flow ci_release.


	cumulus-actions/build-unlocked-test-package runs the flow build_unlocked_test_package and populates the package id onto a commit status.


	cumulus-actions/build-feature-test-package runs the flow build_feature_test_package and populates the package id onto a commit status.


	cumulus-actions/feature-test runs the flow ci_feature.


	cumulus-actions/feature-test-2gp runs the flow ci_feature_2gp.


	cumulus-actions/feature-test-namespaced runs the flow ci_feature.


	cumulus-actions/feature-test-robot runs the flow qa_org, followed by the robot task.


	cumulus-actions/feature-test-robot-2gp runs the flow qa_org_2gp, followed by the robot task.




For examples of how to apply these actions, review the standard workflows in cumulus-actions/standard-workflows. Each Action accepts version parameters (see Version Pinning). Each Action that creates a scratch org accepts the dev-hub-auth-urlparameter (required) and theorg-nameparameter (defaulted). Each Action that interacts with a packaging org (1GP only) accepts thepackaging-org-auth-url parameter.




Scratch Org Base Actions

All job-based Actions that create scratch orgs consume the cumulus-actions/run-flow-scratch or cumulus-actions/run-robot-flow-scratch scratch org base Actions. You can use these base Actions to create your own job-based Actions for your custom Cumulus flows.

cumulus-actions/run-flow-scratch checks out your code, creates a scratch org on a given configuration (org-name), runs a given flow (flow-name) on that org, and then disposes the org. Optionally, it extracts information from the job log that matches a regex (commit-status-regex) and stores that information as the description on a new commit status (commit-status-name), prefixed by commit-status-description-prefix. This optional feature is used to support jobs that create per-commit package versions. The action also accepts version-pinning options (see Tool Version Pinning).

cumulus-actions/run-robot-flow-scratch accepts the parameters dev-hub-auth-url, org-name, and setup-flow. The latter two options are required. The Action will check out your code, create an org from the configuration org-name, and execute setup-flow against it before running Robot Framework tests. It stores Robot results as an artifact. The action also accepts version-pinning options (see Tool Version Pinning).




Primitive Actions

Finally, we also provide a suite of primitive Actions that underlie the base scratch org Actions and all persistent-org Actions.
You can use these primitive Actions to construct your own SDLC automation, even if it’s very different from CumulusCI Flow. Compose primitive
Actions to create workflow automation that delivers to persistent orgs, authenticates using the JWT flow, or sits within your existing
automation structures.

cumulus-actions/default-package-versions accepts as input user-supplied cumulusci-version and sfdx-version values. If these values are non-empty, they are returned; otherwise, default values are returned. The outputs have the same names as the inputs.

cumulus-actions/setup-cumulus installs CumulusCI and SFDX. It accepts optional cumulusci-version and sfdx-version inputs and uses cumulus-actions/default-package-versions@main to populate them if not supplied (see below under Tool Version Pinning for discussion). The action uses the built-in caching functionality of GitHub Actions to cache installed NPM and Python packages, using your supplied versions as the cache key.

cumulus-actions/authorize-org accepts an auth-url and org-name, and ingests that org authorization into the SFDX and CumulusCI keychains. If the optional dev-hub input is set to true, it assigns this org as the default Dev Hub.

cumulus-actions/run-flow executes a given flow (flow-name) against a given org (org-name). The org must be available in the keychain, or be a scratch org configuration, and CumulusCI and SFDX must already be set up.

cumulus-actions/run-task executes a given task (task-name) against a given org (org-name). The org must be available in the keychain, or be a scratch org configuration, and CumulusCI and SFDX must already be set up.






Tool Version Pinning

All non-primitive Actions that run Cumulus operations accept two optional parameters, cumulusci-version and sfdx-version. If these inputs are supplied, the Actions will ensure that the specified versions of the tools are installed.

If the inputs are not populated, the Action will source a default version for each tool from cumulus-actions/default-package-versions@main. Note that we do not pin a tag on default-package-versions: the default CumulusCI and SFDX versions may be changed without publishing a new Action tag, provided that the overall behavior of the Action is not altered. We use this flexibility to ensure that we pin stable versions, and reserve the right to roll back the default in case of unexpected regressions.

The Cumulus Suite Actions require CumulusCI 3.61.1 or greater for any operation that references a packaging org.




Environment Setup and Org Authorization

All Actions that interact with persistent orgs (such as a packaging org or Dev Hub) authorize those orgs using SFDX Auth URLs.
These URLs are obtained via by first authorizing an org to the CLI:

sfdx auth:web:login -a packaging

and then retrieving the auth URL from the JSON output of the command

sfdx force:org:display --json --verbose

under the key sfdxAuthUrl under result.

If you have jq installed, you can do sfdx force:org:display -u packaging-gh --json --verbose | jq -r .result.sfdxAuthUrl.

First-generation package projects will have two auth-URL secrets, for the packaging org and for the Dev Hub.
Second-generation and Unlocked package projects will have at least one auth-URL secret, for the Dev Hub, and may have
two to provide distinct access levels (see below).

Auth URLs should always be stored in GitHub Secrets. There are a number of different ways to organize secret storage.
While we offer recommended best practices here, you should always follow the security guidance of your own
teams.


Dev Hub Auth URLs for Scratch Org Builds

Every Action that creates a scratch org requires a dev-hub-auth-url parameter containing an Auth URL.
We recommend storing this URL in a GitHub Secret called DEV_HUB_AUTH_URL, a convention used in our
reusable workflows.

If you’re working on a single repository, you can store your Dev Hub auth URL in a repository secret.
Locate the Settings->Secrets->Actions section of your GitHub repo, and click “New repository secret”.
Add your auth URL and save the secret.

[image: image of GitHub repository secret UI]

If you’re working in a GitHub organization with multiple repositories, and you want to share the same
user access to the Dev Hub across repositories, you can store your auth URL as an organization secret.
Locate the Organization->Settings->Secrets->Actions section, and click “New organization secret”.
Add your auth URL and save the secret.

[image: image of GitHub organization secret UI]

You can select which repositories to expose the secret to. Using an organization secret makes rotating
this credential easy.

It’s important to use a credential with minimal privileges, as
using this secret in feature-level builds that are executed before code review may open routes for
unscrupulous users to access the credential. We recommend permissioning a Dev Hub user
with the Limited Access - Free License [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/dev_hub_license.htm]
to avoid exposing any other information or functionality to that user.




Packaging Org and Dev Hub Auth URLs for Package Uploads

Packaging org credentials, and Dev Hub credentials that have permissions to upload and promote package versions,
are high risk. It’s critical to ensure that these credentials are protected and cannot be exfiltrated by
malicious changes to your workflow definitions.

We recommend creating a GitHub Environment called packaging and adding the auth URL as an environment secret there.
This means that the secret will not be available to Actions that run against environments other than packaging.

[image: image of GitHub environment setup UI for packaging]

Our standard workflows for creating package versions are pre-configured to use an environment named packaging. If you
build your own workflows, or use an environment name other than packaging, include the declaration

environment: packaging # or other name





in your workflows that need to access this secret.

We recommend adding the following configurations to avoid disclosure of the packaging org secret:


	Configure package-upload builds to run only on main (using workflow triggers).


	Configure the packaging environment to be available only to builds on main.


	Configure Code Owners to identify one or more trusted staff members as owners of your .github directory.


	Configure Branch Protection for main to require code review and Code Owners review prior to merging Pull Requests.
This ensures that rogue Actions cannot disclose this sensitive credential without being reviewed by your trusted staff members.




If you are building a second-generation package, you can still use this pattern to protect the higher-privileged
Dev Hub credentials required to upload and promote a package. Set up a second Dev Hub user with the appropriate
permissions, and store the Dev Hub auth URL for that user in a packaging environment.

[image: image of GitHub environment configuration for packaging]



Environments also allow you to secure your workflow for promoting a production release.

You can choose to set up required reviewers on your packaging environment. Your approvers will then need
to sign off on all beta and production releases.

If you’d like beta builds to run automatically on commits to main without individual review, while
still requiring review on production releases, you can set up two environments: packaging and packaging-prod.
Configure required reviewers on packaging-prod, but not on packaging, and set the auth URL secret for your
packaging org on both environments.

If you use a trigger, such as modification to a specific file protected by Code Owners, to initiate production
package builds rather than a manually-initiated workflow, you may not need to use required reviewers on your
packaging environment at all.






Concurrency Protection

All Actions other than package uploads are safe to run in parallel, because they run against independent scratch orgs.
First-generation package uploads, however, are generally serialized.

In GitHub Actions, concurrency protection takes place at the level of the workflow, not the individual Action. We recommend
following the pattern shown in cumulus-actions/standard-workflows by ensuring that package-upload Actions are run in a job
with the key concurrency set to packaging. This ensures that GitHub Actions serializes execution of jobs against the
packaging org. Note that this concurrency setup is independent of your decisions around environment setup.




Deploying to a Production Org

We’ve chosen not to provide standard workflows or actions for deploying to a production org.
If you’re operating in an org development model, you’re likely to have specific requirements
about how production deployments take place.

In many cases, you’ll want to use the deploy_unmanaged flow or the deploy task.
deploy_unmanaged deploys metadata, but also unschedules Scheduled Apex and uninstalls
previously-deployed components that have been removed from the source
repository. If you do not want incremental component removal or Apex
unscheduling, use the deploy task.

You may also wish to compose custom flows that perform other configuration, deployments,
or setup operations on your production org.

Our release-production-1gp Action is an example of running Cumulus
automation against a production org (in that case, the packaging org). We recommend
using this Action as a model for your own deployment Actions that target Production
or long-lived sandbox orgs.




Building from Scratch

If you prefer to build your own GitHub Actions workflows for scratch, or need to
extend the capabilities in our workflow framework, you can learn more
about how CumulusCI consumes services and authenticated orgs and how
to Register Environment Services.

If you need to use a different type of authentication, such as the JWT Flow, instead
of SFDX auth URLs, you’ll need to compose your own workflows from our supplied
primitives.




Running and Reviewing Actions Workflows

[image: Screenshot showing a running GitHub Action workflow]

If you open a pull request for a branch that triggers a run of your Actions workflow, you
will find a section at the bottom of the pull request that shows the
results of the checks that were performed by the workflow:

[image: Screenshot showing a successful check on a GitHub pull request]

Some Actions are manually triggered, including our release-production-1gp and release-production-2gp
Actions, which upload a production release of a package. To run an Action manually, navigate to
the Actions tab, then select the workflow by name from the list. Click the Run workflow dropdown,
choose the appropriate branch, and click the Run workflow button to start the run.

[image: Running a GitHub Action manually]

You can set any Action as a required status on a protected branch, such as your main branch.
This means that changes can only be merged to that branch if these Actions complete successfully.

See GitHub’s documentation for instructions to configure protected
branches [https://help.github.com/en/github/administering-a-repository/configuring-protected-branches]
and enable required status
checks [https://help.github.com/en/github/administering-a-repository/enabling-required-status-checks].




References


	GitHub Actions Documentation [https://help.github.com/en/actions]










            

          

      

      

    

  

  
    
    
    Testing with Second-Generation Packaging
    

    
 
  

    
      
          
            
  
Testing with Second-Generation Packaging

CumulusCI makes it easy to harness the power of second-generation
managed packages to implement an advanced, comprehensive testing process
for both first- and second-generation managed package products.

This process yields multiple benefits:


	You can test managed packages as managed packages, but before
merging code.


	You gain the ability to perform end-to-end testing across
applications that span multiple packages earlier in the development
lifecycle.


	For existing 1GP products, it also allows for the creation of a
full-scale 2GP testing and development framework before migrating
products from 1GP to 2GP. Migration, when generally available, will
be much easier because products are already being tested as 2GPs.




Salesforce.org is actively using this process for feature-level testing
and end-to-end testing of dozens of existing first-generation packages,
while preparing for the migration into second-generation packaging. This
process is also applicable for testing products that started as
second-generation packages.


Building 2GP Beta Packages in Continuous Integration

Any managed package product - first or second generation - can use
CumulusCI automation to build and test 2GP beta packages. The
out-of-the-box flow build_feature_test_package can be run on any
commit. This flow builds a 2GP beta package using an alternate package
name (which defaults to <project name> Managed Feature Test,
reflecting its intended role in supporting feature-branch testing) but
with the same namespace as the main package.

The 2GP test package is also built using the Skip Validation option,
which defers validation of the package until install time. Skipping
validation ensures that feature test packages build extremely quickly,
and also avoids locking in dependency versions - making it easy to
achieve complex end-to-end testing workflows, as described in
End-to-End Testing with Second-Generation
Packages.

CumulusCI stores data about feature test packages in GitHub
commit-status messages. When the build_feature_test_package flow
completes successfully, the 04t id of the created package version is
stored in the “Build Feature Test Package” commit status on GitHub.
Testing and 2GP build flows can acquire the package version from this
store.




2GP Tests for Feature Branches

The ci_feature_2gp flow parallels ci_feature, which is used for
unmanaged feature testing in continuous integration, but uses a 2GP
feature test package instead of deploying the project unmanaged.

When executed on a specific commit, the flow acquires a 2GP feature test
package id from the “Build Feature Test Package” commit status on that
commit. It installs that package, then executes Apex unit tests.


Note

The ci_feature_2gp flow is intended for use after the
build_feature_test_package flow. On MetaCI, this is implemented by
using a Commit Status trigger to run ci_feature_2gp; on other CI
systems, a ci_feature_2gp build may be made dependent on a
build_feature_test_package build.



Running 2GP tests in CI can replace the use of namespaced scratch orgs
for most automated testing objectives. 2GP testing orgs provide a more
accurate representation of how namespaces are applied and how metadata
will behave once packaged, making it possible to catch packaging-related
issues before code is merged to the main branch or deployed to a 1GP
packaging org.


Note

Component coverage for first- and second-generation packages is very
similar, but some projects may use components with differing behaviors.
Consult the Metadata Coverage
Report [https://developer.salesforce.com/docs/metadata-coverage] with
any questions.



Manual QA can be executed on feature branches via the flow qa_org_2gp,
which operates just like ci_feature_2gp but which also executes
config_qa to prepare an org for manual testing. Similarly, Robot tests
may be executed against 2GP orgs by running qa_org_2gp instead of
qa_org before invoking robot.




End-to-End Testing with Second-Generation Packages

The qa_org_2gp flow allows for performing manual and automated
end-to-end tests of multi-package products sooner in the development
lifecycle then was previously possible. Take the following example:


	Product B has a dependency on Product A.


	Product B is developing a new feature that is dependent on a new
feature being developed for Product A.




Without the ability to test with 2GP packages, end-to-end testing on
Product A and B’s linked features could only occur once both products
have moved significantly forward in the development lifecycle:


	Both A and B merge their feature work into their main branch in a
source control system.


	New feature metadata is uploaded to the packaging org, if the
products are 1GPs.


	New beta versions for both Product A and B are created


	In many cases, a production release for Product A must also be
created to satisfy B’s dependency, if the packages are 1GPs.




Once all of the steps above have occurred, end-to-end testing with new
managed package versions can take place. However, if any errors are
found at this point the entire process has to start over again, and
first-generation packages may have already incurred component lock-in.
With 2GP testing, this is no longer the case.

Instead, a tester may execute the qa_org_2gp flow from a feature
branch in the repository of Product B. The following will occur:


	CumulusCI resolves dependencies as they are defined Product B’s
cumulusci.yml file, using the commit_status resolution strategy.
CumulusCI matches the current branch and release against branches in
the upstream dependencies to locate the most relevant 2GP packages
for this testing process. See Controlling GitHub Dependency Resolution for more
details.


	CumulusCI installs suitable 2GP feature test packages for Product A
and any other dependencies, if found, or falls back to 1GP packages
if not found.


	CumulusCI installs a Project B 2GP feature test package, sourced
from a GitHub commit status on the current commit. (The commit must
have been pushed, and build_feature_test_package must have run
successfully).


	Finally, CumulusCI executes the config_qa flow to prepare the org
for use in testing.




This allows for full end-to-end testing of features that have
inter-package-dependencies prior to the merging of code to any
long-lived branches (e.g. a release branch or main). Because CumulusCI
defaults to building packages using Skip Validation, any suitable 2GP
feature test package installed for Project A may satisfy the dependency,
making it possible to test feature development without committing to
package version numbers or specific dependency versions.

The process, backed by second-generation packaging, maximizes the
utility of feature-level testing processes for both first- and
second-generation packages, while helping prepare first-generation
packages to migrate to 2GP once migration becomes generally available.







            

          

      

      

    

  

  
    
    
    Run CumulusCI Headlessly
    

    
 
  

    
      
          
            
  
Run CumulusCI Headlessly

CumulusCI can be used to run continuous integration builds in your CI
system.

This section outlines how to setup services and orgs that can be defined
in a particular environment such that they will be recognized by
CumulusCI.

If you’re working in GitHub Actions, you can take advantage of our
GitHub Actions framework to streamline your setup
process. You’ll need the information in this document only if you wish
to use an alternate authorization strategy or configure additional
services.


Register Environment Services

It is often the case that services you use for local development will
differ from the services that you want to use in your build system. For
example, developers will setup a GitHub service locally that is
associated with their GitHub User, while an integration build may want
to run as an integration user when interacting with GitHub. By providing
environment variables with specific prefixes, CumulusCI can detect and
register those services for use when running tasks and flows.


Name Environment Services

Environment variables that define CumulusCI services adhere to the
following format:

CUMULUSCI_SERVICE_<service_type>[__service_name]





All services should start with the prefix CUMULUSCI_SERVICE_ followed
immediately by the service_type (for a full list of available services
run cci service list). Additionally, you have the option to provide a
unique name for your service by adding a double underscore (__)
followed by the name you wish to use. If a name is specified it is
prepended with “env-” to help establish that this service is coming
from the environment. If a name is not specified, a defualt name of
env is used for that service.

Here are some examples of environment variable names along with their
corresponding service types and names:


	CUMULUSCI_SERVICE_github –> A github service that will have
the default name of env


	CUMULUSCI_SERVICE_github__integration-user –> A github
service that will have the name env-integration-user


	CUMULUSCI_SERVICE_connected_app –> A connected_app service
with the default name of env


	CUMULUSCI_SERVICE_connected_app__sandbox –> A connected_app
service with the name env-sandbox




By always prepending env to the names of services
specified by environment variables, it is easy to see which services are
currently set by environment variables and which are not.




Environment Service Config Values

The value of the environment variables (i.e. everything that comes after
the = character) are provided in the form of a JSON string. The
following shows an example that defines a github service via an
environment variable:

CUMULUSCI_SERVICE_github='{"username": "jdoe", "email": "jane.doe@some.biz", "token": "<personal_access_token>"}'





These values provide CumulusCI with the required attributes for a
particular service. The easiest way to find what attributes are needed
for a particular service is to look for your service under the services
tag in the CumulusCI standard
library [https://github.com/SFDO-Tooling/CumulusCI/blob/34533b4a1caa3f1850c64e223ece26069c83b60e/cumulusci/cumulusci.yml#L1164]
and provide values for all “attributes” listed under the desired
service. You can also use cci service info to get the values from a
service you’ve configured locally.

For example, if you’re looking to register a connected_app service,
then the attributes: callback_url, client_id, and client_secret
would need to be provided in the following format:

"{"callback_url": "<callback_url>", "client_id": "<client_id>", "client_secret": "<client_secret>"}"






The values <callback_url>, <client_id>, and <client_secret>
should all be replaced with actual values.









Register Persistent Orgs


SFDX Auth URL Authorization

CumulusCI can import persistent org authorization from the SFDX CLI.
This capability allows you to store the SFDX auth URL for an org in
your CI system’s secret storage, import it into the SFDX keychain,
and then use it directly from CumulusCI.

To do so, follow these steps.


	Retrieve your auth URL.


	Authorize the org using sfdx auth:sfdxurl:store.


	Run cci org import <org name> <org name>.







JWT Flow Authorization

Using JWT authorization provides you with the greatest control over access
to your persistent org. This approach uses a Connected App and digital certificate,
which you control and can rotate as desired.

First, you need a Connected App that is configured with a certificate in
the “Use digital signatures” setting in its OAuth settings. You can
follow the Salesforce DX Developer Guide to get this set up:


	Create a private key and self-signed
certificate [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_key_and_cert.htm]


	Create a Connected
App [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_connected_app.htm]


	In addition to the OAuth scopes mentioned in that article, CumulusCI
also requires the full scope.




Once you have a Connected App created, you can configure CumulusCI to
use this Connected App to login to a persistent org by setting the
following environment variables.


	CUMULUSCI_ORG_orgName


	SFDX_CLIENT_ID


	SFDX_HUB_KEY




See the below entries for the values to use with each.


Important

Setting the above environment variables negates the need to use the
cci org connect command. You can simply run a cci command and pass
the --org orgName option, where orgName corresponds to the name used
in the CUMULUSCI_ORG_* environment variable.



In the context of GitHub Actions, all of these environment variables
would be declared under the env section of a workflow. Below is an
example of what this would look like:

env:
    CUMULUSCI_ORG_sandbox:
        {
            "username": "just.in@salesforce.org",
            "instance_url": "https://sfdo--sbxname.my.salesforce.com",
        }
    SFDX_CLIENT_ID: { { $secrets.client_id } }
    SFDX_HUB_KEY: { { $secrets.server_key } }





The above assumes that you have client_id and server_key setup in
your GitHub encrypted
secrets [https://docs.github.com/en/free-pro-team@latest/actions/reference/encrypted-secrets]

Note that the value of the server_key environment variable is the
content of the file server.key, which was created as part of your
Connected App setup. The key is in PEM format.


CUMULUSCI_ORG_orgName

The name of this environment variable defines what name to use for the
value of the --org option. For example, a value of
CUMULUSCI_ORG_mySandbox would mean you use --org mySandbox to use
this org in a cci command.

Set this variable equal to the following json string:

{
    "username": "USERNAME",
    "instance_url": "INSTANCE_URL"
}






	USERNAME - The username of the user who will login to the target
org.


	INSTANCE_URL - The instance URL for the org. Should begin with the
https:// schema.




You can see an example of setting this environment variable in a GitHub
actions workflow in our demo
repository [https://github.com/SFDO-Tooling/CumulusCI-CI-Demo/blob/404c5114dac8afd3747963d5abf63be774e61757/.github/workflows/main.yml#L11].


Wizard Note

If the target org’s instance URL is instanceless (i.e. does not contain
a segment like cs46 identifying the instance), then for sandboxes it is
also necessary to set SFDX_AUDIENCE_URL to
https://test.salesforce.com". This instructs CumulusCI to set the
correct aud value in the JWT (which is normally determined from the
instance URL).






SFDX_CLIENT_ID

Set this to your Connected App’s client id. This, combined with the
SFDX_HUB_KEY variable instructs CumulusCI to authenticate to the org
using the JWT Bearer
Flow [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_jwt_flow.htm##sfdx_dev_auth_jwt_flow]
instead of the Web Server
Flow [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm##!].




SFDX_HUB_KEY

Set this to the private key associated with your Connected App (this is
the contents of your server.key file). This combined with the
SFDX_CLIENT_ID variable instructs CumulusCI to authenticate to the org
using the JWT Bearer
Flow [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_jwt_flow.htm##sfdx_dev_auth_jwt_flow]
instead of the Web Server
Flow [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm##!].








Multiple Services of the Same Type

In rare cases a build may need to utilize multiple services of the same
type. To set a specific service as the default for subsequent
tasks/flows run the cci service default <service_type> <name> command.
You can run this command again to set a new default service to be used
for the given service type.







            

          

      

      

    

  

  
    
    
    Release Managed and Unlocked Packages
    

    
 
  

    
      
          
            
  
Release Managed and Unlocked Packages

CumulusCI makes it easy to build first- and second-generation managed
packages, as well as unlocked packages. While the overall workflows for
all types of packages are quite similar, there are key differences
between them. The chapters below explore all three packaging options.

New projects should, absent any other considerations, generally choose
to use second-generation managed packages or unlocked packages. Learn
more about second-generation packaging and its advantages in the
Salesforce DX Developer
Guide [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp.htm].



	Release a First-Generation Managed Package

	Release a Second-Generation Managed Package

	Release an Unlocked Package

	Extend NPSP and EDA with Second-Generation Packaging

	Generate Release Notes

	Manage Push Upgrades









            

          

      

      

    

  

  
    
    
    Release a First-Generation Managed Package
    

    
 
  

    
      
          
            
  
Release a First-Generation Managed Package

This section outlines how to release first-generation (1GP) Salesforce
managed package projects. Salesforce.org’s Release Engineering team
practices CumulusCI Flow, which incorporates all of these steps.


Prerequisites

This section assumes:


	CumulusCI is installed on your computer.


	A Salesforce managed package project has been configured
for use with CumulusCI.


	A packaging org is connected to CumulusCI under the name of packaging.




To verify this setup and display information about the connected
packaging org:

$ cci org info packaging






Note

The packaging org can be listed under an alias. For a complete list of
orgs connected to CumulusCI, run cci org list.



If your project has been configured for use with CumulusCI,
cci org info lists the project’s namespace under package__namespace
in the output.


Create a Managed Package Project

If you haven’t created a managed package project, follow these steps:


	Create a Developer Edition Org. (Sign up for one
here. [https://developer.salesforce.com/signup])


	Create a managed
package [https://developer.salesforce.com/docs/atlas.en-us.packagingGuide.meta/packagingGuide/packaging_uploading.htm].


	Assign a
namespace [https://developer.salesforce.com/docs/atlas.en-us.packagingGuide.meta/packagingGuide/isv2_3_quickstart.htm].


	Configure the namespace in CumulusCI.









Deploy to a Packaging Org

CumulusCI deploys metadata to a packaging org with the ci_master
flow.


Warning

The ci_master flow runs the
uninstall_packaged_incremental task,
which deletes any metadata from the package in the target org that’s
not in the repository.



$ cci flow run ci_master --org packaging





The ci_master flow executes these tasks in the target org.


	Updates any project dependencies


	Deploys any unpackaged metadata located in the pre directory


	Deploys packaged metadata


	Deploys destructive changes to remove metadata in the target org
that is no longer in the local repository


	Runs the config_packaging flow, which by default consists only of
the update_admin_profile task.





Tip

To list each step in the ci_master flow, run
cci flow info ci_master.



CumulusCI separates uploading metadata to the packaging org and
releasing a beta version of the package into the ci_master and
release_beta flows, respectively. This separation offers discretion to
run additional checks against the org, if necessary, between deploy and
release steps.




Create a Beta Version

The release_beta flow groups the common tasks that must be executed
for the release of a new beta version of a project.

$ cci flow run release_beta --org packaging





This flow always runs against the project’s packaging org, where
it:


	Uploads a new beta version of the managed package.


	Creates a new GitHub release tag for the new beta version. Extension
packages that also use CumulusCI require this release tag to find
the latest version when this repository is listed as a dependency.


	Generates Release Notes.


	Syncs feature branches with the main branch, which automatically
integrates the latest changes from main. For more information see
Auto Merging.





Important

This flow assumes that the package contents were already deployed using
the ci_master flow. It does not include a step to deploy them.



To create a new beta version for your project without the bells and
whistles, use the upload_beta task:

$ cci task run upload_beta --org packaging --name package_version








Test a Beta Version

The ci_beta flow installs the latest beta version of the project in a
scratch org, and runs Apex tests against it.

$ cci flow run ci_beta --org beta





This flow is intended to be run whenever a beta release is created.




Upload and Test a Final Version

To upload a production release of your managed package project:

$ cci flow run release_production --org packaging





Similar to release_beta, this task uploads a new production version of
your package, creates a release tag in GitHub, and aggregates release
notes for the new version.


Important

This flow assumes that the package contents have previously been
deployed using the ci_master flow.



To upload the new production version without creating the GitHub tag and
generating release notes:

$ cci task run upload_production --name v1.2.1





To test the new package version:

$ cci flow run ci_release --org release





The ci_release flow installs the latest production release version,
and runs the Apex tests from the managed package on a scratch org.







            

          

      

      

    

  

  
    
    
    Release a Second-Generation Managed Package
    

    
 
  

    
      
          
            
  
Release a Second-Generation Managed Package

This section outlines how to release second-generation (2GP) Salesforce
managed package projects. Salesforce.org’s Release Engineering team
practices CumulusCI Flow, which incorporates all of these steps.


Prerequisites

This section assumes:


	CumulusCI is installed on your computer.


	A Salesforce managed package project has been configured
for use with CumulusCI.


	Your Dev Hub has the required features enabled: Enable DevHub
Features in Your
Org [https://developer.salesforce.com/docs/atlas.en-us.packagingGuide.meta/packagingGuide/sfdx_setup_enable_devhub.htm]
and Enable Unlocked and Second-Generation Managed Packaging [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_secondgen_pkg.htm].


	A namespace org has been created and linked to the active Dev
Hub [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_create_namespace.htm].







Create a Beta Version

CumulusCI uses the dependencies section of your cumulusci.yml file
to define your 2GP project’s dependencies. CumulusCI uses GitHub
releases to identify the ancestor id and new version number for the beta
package version. By default, the new beta version will increment the
minor version number from the most recent GitHub release.

Because Salesforce requires package version Ids (04txxxxxxxxxxxx) for
2GP package dependencies, dependencies with 1GP releases created before
CumulusCI 3.34.0 must be installed in an org to make those Ids
available. If your project has such dependencies, start by running

$ cci flow run dependencies --org dev





If you are using CumulusCI 3.43.0 or later, your project uses
dependencies specified as a version_id, 2GP dependencies, or
dependencies whose releases were created by CumulusCI 3.34.0 or later,
you do not need to execute this step. Current versions of CumulusCI
automatically store and consume the package version Id in GitHub
releases.

When you’re ready, and your org is prepared, to upload a package
version, run the command

$ cci flow run release_2gp_beta --org dev






Important

The org supplied to release_2gp_beta has two purposes. One is to look
up the Ids of dependency packages (see above). The other is to provide
the configuration for the build org used to upload the 2GP package
version. CumulusCI will use the scratch org definition file used to
create the specified org (dev here) to create the build org, which
defines the features and settings available during package upload.

You may wish to define a separate scratch org configuration just for
package uploads to ensure only your required features are present.



The release_2gp_beta flow executes these tasks:


	Uploads a new beta version of the managed package.


	Creates a new GitHub release tag for the new beta version. Extension
packages that also use CumulusCI require this release tag to find
the latest version when this repository is listed as a dependency.


	Generates Release Notes.


	Syncs feature branches with the main branch, which automatically
integrates the latest changes from main. For more information see
Auto Merging.





Tip

To list each step in the release_2gp_beta flow, run
cci flow info release_2gp_beta.




Customizing Package Uploads

2GP package uploads are performed by the create_package_version task.
If the built-in configuration used by release_2gp_beta does not suit
the needs of your project - for example, if you want to increment
version numbers differently, or build a package with the Skip Validation
option - you can customize the options for that task in
release_2gp_beta or invoke the task directly.

To learn more about the available options, run

$ cci task info create_package_version








Handling Unpackaged Metadata

CumulusCI projects can include unpackaged metadata in directories like
unpackaged/pre and unpackaged/post. These directories are deployed
when CumulusCI creates a scratch org, and are installed in the packaging
org when CumulusCI creates 1GP package versions.However,
second-generation packaging does not have a packaging org, and does not
allow interactive access to the build org.

CumulusCI offers two modes of handling unpackaged metadata owned by
dependencies when building a second-generation package.

The default behavior is to ignore unpackaged metadata. If unpackaged
metadata is intended to satisfy install-time dependencies of packages,
this requires that those dependencies be met in other ways, such as by
configuring the scratch org definition. For examples of how to satisfy
the install-time dependencies for NPSP and EDA without using unpackaged
metadata, see
Extending NPSP and EDA with Second-Generation Packaging.

The other option is to have CumulusCI automatically create unlocked
packages containing unpackaged metadata from dependency projects. For
example, if your project depended on the repository Food-Bank, which
contained the unpackaged metadata directories


	unpackaged/pre/record_types


	unpackaged/pre/setup




CumulusCI would automatically, while uploading a version of your
package, upload unlocked package versions containing the current content
of those unpackaged directories.

The unlocked package route is generally suitable for testing only, where
it may be convenient when working with complex legacy projects that
include lots of unpackaged metadata. However, it’s generally not
suitable for use when building production packages, because your
packages would have to be distributed along with those unlocked
packages. For this reason, this behavior is off by default. If you would
like to use it, configure your cumulusci.yml to set the option
create_unlocked_dependency_packages on the create_package_version
task.






Test a Beta Version

The ci_beta flow installs the latest beta version of the project in a
scratch org, and runs Apex tests against it.

$ cci flow run ci_beta --org beta





This flow is intended to be run whenever a beta release is created.




Promote a Production Version

To be installed in a production org, an 2GP package version must be
promoted [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_create_pkg_ver_promote.htm]
to mark it as released.

To promote a production release of your managed package project:

$ cci flow run release_2gp_production --org packaging





Unlike first-generation packages, promoting a second-generation package
doesn’t upload a new version. Instead, it promotes the most recent beta
version (found in the project’s GitHub releases) to production status.
Then, CumulusCI creates a new, production GitHub release, and aggregates
release notes for that release.

You can also promote a package using its 04t package Id, without using
the GitHub release operations:

$ cci task run promote_package_version --version_id 04t000000000000 --promote_dependencies True





Alternatively, you can use the sfdx force:package:version:promote
command to promote a 2GP package. Note that using this command will also
not perform any release operations in GitHub.


Promote Dependencies

If additional unlocked packages were created to hold unpackaged
dependencies, they must be promoted as well. To promote dependencies
automatically use --promote_dependencies True with the
promote_package_version task, or customize the
release_2gp_production flow to include that option.

$ cci task run promote_package_version --version_id 04t000000000000 --promote_dependencies True





Test a Production Version ——————-

To test the new package version:

$ cci flow run ci_release --org release





The ci_release flow installs the latest production release version and
runs the Apex tests from the managed package on a scratch org.









            

          

      

      

    

  

  
    
    
    Release an Unlocked Package
    

    
 
  

    
      
          
            
  
Release an Unlocked Package

While CumulusCI was originally created to develop managed packages, it
can also be used to develop and release unlocked
packages [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_intro.htm].


Prerequisites

This section assumes:


	CumulusCI is installed on your computer.


	A Salesforce managed package project has been configured
for use with CumulusCI.


	Your Dev Hub has the required features enabled: Enable DevHub
Features in Your
Org [https://developer.salesforce.com/docs/atlas.en-us.packagingGuide.meta/packagingGuide/sfdx_setup_enable_devhub.htm]
and Enable Unlocked and Second-Generation Managed
Packaging [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_secondgen_pkg.htm].


	If you’re building a namespaced unlocked package, a namespace org
has been created and linked to the active Dev
Hub [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_create_namespace.htm].







Create a Beta Version

CumulusCI uses the dependencies section of your cumulusci.yml file
to define your 2GP project’s dependencies. CumulusCI uses GitHub
releases to identify the ancestor Id and new version number for the beta
package version. By default, the new beta version will increment the
minor version number from the most recent GitHub release.

Because Salesforce requires package version Ids (04txxxxxxxxxxxx) for
2GP package dependencies, some CumulusCI dependencies must be installed
in an org to make those Ids available. If your project has dependencies
that are not specified as a version_id, start by running

$ cci flow run dependencies --org dev





When you’re ready, and your org is prepared, to upload a package
version, run the command

$ cci flow run release_unlocked_beta --org dev






Important

The org supplied to release_unlocked_beta has two purposes. One is to
look up the Ids of dependency packages (see above). The other is to
provide the configuration for the build org used to upload the 2GP
package version. CumulusCI will use the scratch org definition file used
to create the specified org (dev here) to create the build org, which
defines the features and settings available during package upload.

You may wish to define a separate scratch org configuration (build)
just for package uploads to ensure only your required features are
present.



The release_unlocked_beta flow executes these tasks:


	Uploads a new beta version of the unlocked package.


	Creates a new GitHub release tag for the new beta version. Extension
packages that also use CumulusCI require this release tag to find
the latest version when this repository is listed as a dependency.


	Generates Release Notes.


	Syncs feature branches with the main branch, which automatically
integrates the latest changes from main. For more information see
Auto Merging.





Tip

To list each step in the release_unlocked_beta flow, run
cci flow info release_unlocked_beta.




Customizing Package Uploads

2GP package uploads are performed by the create_package_version task.
If the built-in configuration used by release_unlocked_beta does not
suit the needs of your project - for example, if you want to increment
version numbers differently, or build an org-dependent package - you can
customize the options for that task in release_unlocked_beta or invoke
the task directly.

To learn more about the available options, run

$ cci task info create_package_version





CumulusCI can also create org-dependent and skip-validation packages
when configured with the appropriate options.




Handling Unpackaged Metadata

CumulusCI projects can include unpackaged metadata in directories like
unpackaged/pre and unpackaged/post. These directories are deployed
when CumulusCI creates a scratch org, and are installed in the packaging
org when CumulusCI creates 1GP package versions.However,
second-generation packaging does not have a packaging org, and does not
allow interactive access to the build org.

CumulusCI offers two modes of handling unpackaged metadata owned by
dependencies when building a second-generation package.

The default behavior is to ignore unpackaged metadata. If unpackaged
metadata is intended to satisfy install-time dependencies of packages,
this requires that those dependencies be met in other ways, such as by
configuring the scratch org definition. For examples of how to satisfy
the install-time dependencies for NPSP and EDA without using unpackaged
metadata, see Extend NPSP and EDA with Second-Generation Packaging.

The other option is to have CumulusCI automatically create unlocked
packages containing unpackaged metadata from dependency projects. For
example, if your project depended on the repository Food-Bank, which
contained the unpackaged metadata directories


	unpackaged/pre/record_types


	unpackaged/pre/setup




CumulusCI would automatically, while uploading a version of your
package, upload unlocked package versions containing the current content
of those unpackaged directories.

The unlocked package route is generally suitable for testing only, where
it may be convenient when working with complex legacy projects that
include lots of unpackaged metadata. However, it’s generally not
suitable for use when building production packages, because your
packages would have to be distributed along with those unlocked
packages. For this reason, this behavior is off by default. If you would
like to use it, configure your cumulusci.yml to set the option
create_unlocked_dependency_packages on the create_package_version
task.






Test a Beta Version

The ci_beta flow installs the latest beta version of the project in a
scratch org, and runs Apex tests against it.

$ cci flow run ci_beta --org beta





This flow is intended to be run whenever a beta release is created.




Promote a Production Version

To be installed in a production org, an 2GP package version must be
promoted [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_create_pkg_ver_promote.htm]
to mark it as released.

To promote a production release of your managed package project:

$ cci flow run release_unlocked_production --org packaging





Unlike first-generation packages, promoting a second-generation package
doesn’t upload a new version. Instead, it promotes the most recent beta
version (found in the project’s GitHub releases) to production status.
Then, CumulusCI creates a new, production GitHub release, and aggregates
release notes for that release.

You can also promote a package using its 04t package Id, without using
the GitHub release operations:

$ cci task run promote_package_version --version_id 04t000000000000 --promote_dependencies True





Alternatively, you can use the sfdx force:package:version:promote
command to promote a 2GP package.


Promote Dependencies

If additional unlocked packages were created to hold unpackaged
dependencies, they must be promoted as well. To promote dependencies
automatically use --promote_dependencies True with the
promote_package_version task, or customize the
release_unlocked_production flow to include that option.

$ cci task run promote_package_version --version_id 04t000000000000 --promote_dependencies True





Test a Production Version ——————-

To test the new package version:

$ cci flow run ci_release --org release





The ci_release flow installs the latest production release version and
runs the Apex tests from the managed package on a scratch org.









            

          

      

      

    

  

  
    
    
    Extend NPSP and EDA with Second-Generation Packaging
    

    
 
  

    
      
          
            
  
Extend NPSP and EDA with Second-Generation Packaging

Building packages that extend (depend on) NPSP and EDA using
second-generation packaging involves some unique complications. Both
NPSP and EDA have install-time dependencies on Record Type org features:
an Account Record Type must exist in order for the packages to install.

When building first-generation packages, both NPSP and EDA serve this
need by installing unpackaged Record Types stored in their
unpackaged/pre folders. However, second-generation packaging doesn’t
allow interactive access to its build orgs, where package versions are
created.

We recommend that projects which extend EDA or NPSP with a
second-generation package use scratch org definition files to satisfy
these Record Type dependencies. You can do this by creating a new org
definition file in orgs, based on your existing org definitions, and
adding to it an objectSettings section. We’ll call this file
orgs/build.json.

For NPSP, use:

"settings": {
    /* Your project's settings are here */
},
"objectSettings": {
    "account": {
        "defaultRecordType": "default"
    }
}





and for EDA, use:

"settings": {
    /* Your project's settings are here */
},
"objectSettings": {
    "account": {
        "defaultRecordType": "Administrative"
    }
}





This satisfies EDA’s requirement for a specific Record Type name.

You’ll also add to your `cumulusci.yml`:

orgs:
    scratch:
        build:
            config_file: orgs/build.json





Then, run your 2GP builds against the org `build`:

$ cci flow run dependencies --org build
$ cci flow run release_2gp_beta --org build





This will result in the creation of default Record Types in the build
org, allowing NPSP to be installed. Meanwhile, your other scratch orgs
will continue to use the NPSP or EDA default Record Types, installed by
CumulusCI’s dependency-management system and reflecting the
configuration of the subscriber orgs into which your package will
ultimately be installed.





            

          

      

      

    

  

  
    
    
    Generate Release Notes
    

    
 
  

    
      
          
            
  
Generate Release Notes

The github_release_notes task fetches the text from Pull Requests that
were merged between two given tags. The task then searches for specific
titles (Critical Changes, Changes, Issues Closed, New Metadata,
Installation Info, and so on) in the Pull Request bodies, and aggregates
the text together under those titles in the GitHub tag description.

github_release_notes is automatically run during CumulusCI’s built-in
release flows.

To see what the release notes look like without publishing them to
GitHub:

$ cci task run github_release_notes --tag release/1.2






Note

The --tag option indicates which release’s change notes are
aggregated. The previous command aggregates all change notes between the
[1.2]{.title-ref} release and the [1.1]{.title-ref} release.



To see where each line in the release notes comes from, use the
--link_pr True option.

$ cci task run github_release_notes --tag release/1.2 --link_pr True





To publish the release notes to a release tag in GitHub, use the
--publish True option:

$ cci task run github_release_notes --tag release/1.2 --publish True





To use additional headings, add new ones (as parsers) under the
project__git__release_notes section of the cumulusci.yml file.

release_notes:
    parsers:
        7: class_path: cumulusci.tasks.release_notes.parser.GithubLinesParser






Note

The new parser is listed with the number 7 because the first six are
the default
parsers [https://github.com/SFDO-Tooling/CumulusCI/blob/671a0e88cef79e9aeefe1e2b835816cd8141bdbb/cumulusci/cumulusci.yml#L1154]
that come with CumulusCI.







            

          

      

      

    

  

  
    
    
    Manage Push Upgrades
    

    
 
  

    
      
          
            
  
Manage Push Upgrades

If your packaging org (for first-generation packages) or Dev Hub (for
second-generation packages) is enabled to use push upgrades, CumulusCI
can schedule push upgrades with the push_sandbox and push_all tasks.


Warning

push_all schedules push upgrades to all customers’ production and
sandbox orgs. Please confirm that this action is desired before
executing the task.



$ cci task run push_all --version <version> --org packaging





Replace <version> with the version of the managed package to be
pushed.

By default, push upgrades are scheduled to run immediately.

To schedule the push upgrades to occur at a specific time, use the
--start_time option with a time value in UTC.

$ cci task run push_all --version <version> --start_time 2020-10-19T10:00 --org packaging





There are additional tasks related to push upgrades in the CumulusCI
standard library.


	push_failure_report: Produces a
csv report of the failed and otherwise anomalous push jobs.


	push_list: Schedules a push
upgrade of a package version to all orgs listed in a specified file.


	push_qa: Schedules a push
upgrade of a package version to all orgs listed in
push/orgs_qa.txt.


	push_sandbox: Schedules a push
upgrade of a package version to all subscribers’ sandboxes.


	push_trial: Schedules a push
upgrade of a package version to Trialforce Template orgs listed in
push/orgs_trial.txt.








            

          

      

      

    

  

  
    
    
    Manage Unpackaged Configuration
    

    
 
  

    
      
          
            
  
Manage Unpackaged Configuration

Not everything that’s part of an application can be part of a package.

CumulusCI implements the Product Delivery Model by offering support for
complex applications – applications that may include multiple managed
packages as well as unpackaged metadata, and setup automation that
configures org settings or makes precise changes to existing
configuration.

The tools used to implement that support are unpackaged metadata and
Metadata ETL.

Unpackaged metadata refers to metadata that is not delivered as part of
a package, and can include both support metadata delivered to users as
well as metadata that operationally configures orgs used by the product.

Metadata ETL is a suite of tasks that supports surgically altering
existing metadata in an org. It’s a powerful technique that alters the
unpackaged configuration in an org without risking damage to existing
customizations by overwriting them with incoming metadata. Metadata ETL
is relevant for delivering applications to customers safely, and is
often a superior alternative to unpackaged metadata.

To learn more, see Metadata ETL.


Roles of Unpackaged Metadata


unpackaged/pre: Prepare an Org

Some projects require that unpackaged metadata be deployed to finish the
customization of an org before the package’s own code and metadata
are deployed.

For example, the Nonprofit Success Pack
(NPSP) [https://github.com/SalesforceFoundation/NPSP] must deploy
unpackaged Record Types prior to installing its own packages.
unpackaged/pre is the location designed for such metadata, which is
stored in subdirectories such as unpackaged/pre/first.

CumulusCI’s standard flows that build orgs, such as dev_org and
install_prod, always deploy metadata bundles found in unpackaged/pre
before proceeding to the deployment of the application. It’s also easy
to include unpackaged/pre metadata in customer-facing installers run
via MetaDeploy.

The deploy_pre task, which is part of the dependencies flow, is
responsible for deploying these bundles.


Important

Do not include metadata in unpackaged/pre unless it is intended to be
delivered to all installations of the product.






unpackaged/post: Configuration After Package Install

Projects often include metadata that is genuinely part of the
application, but cannot be delivered as part of a managed package for
operational reasons. This metadata must be deployed after the
package’s own code and metadata are deployed first and the org is
configured.

For example, a product can’t deliver TopicsForObjects metadata as
part of a managed package because that type of metadata isn’t
packageable. unpackaged/post is the home for this kind of metadata,
which is stored in subdirectories such as unpackaged/post/first.


Note

To learn more about which components are packageable, see the Metadata
Coverage
Report [https://mdcoverage.secure.force.com/docs/metadata-coverage].



CumulusCI’s standard flows that build orgs, such as dev_org and
install_prod, always deploy metadata bundles found in
unpackaged/post, making it a full-fledged part of the application.
It’s also easy to include unpackaged/post metadata in customer-facing
installers run via MetaDeploy.

The deploy_post task, which is part of the config_dev, config_qa,
and config_managed flows, is responsible for deploying these bundles.


Important

Do not include metadata in unpackaged/post unless it is intended to be
delivered to all environments (both managed installations and
unmanaged deployments). It’s also critical for managed package projects
that this metadata include namespace tokens (see namespace
injection).






unpackaged/config: Tailor an Org

Projects can come with more than one supported configuration in their
CumulusCI automation. For example, projects often support distinct,
tailored dev_org, qa_org, and install_prod flows, each of which
performs a unique setup for their specific use case.

Unpackaged metadata stored in unpackaged/config is a tool to support
operational needs that tailor orgs to different configurations. For
instance, a testing-oriented scratch org may need to deploy a customized
set of Page Layouts to help testers easily visualize data under test.
Such page layouts are stored in unpackaged/config/qa.






Unpackaged Metadata Folder Structure

All unpackaged metadata is stored in the unpackaged directory tree,
which contains these top-level directories.


	unpackaged/pre


	unpackaged/post


	unpackaged/config




These trees contain metadata bundles in Metadata API or Salesforce DX
format. CumulusCI automatically converts Salesforce DX-format unpackaged
bundles to Metadata API format before deploying them.




Namespace Injection

Projects that build managed packages often construct their unpackaged
metadata to be deployable in multiple contexts, such as:


	Unmanaged deployments, such as developer orgs.


	Unmanaged namespaced scratch orgs.


	Managed contexts, such as a beta test org or a demo org created with
install_prod.




For example, metadata located in unpackaged/post is deployed after the
application code in both unmanaged and managed contexts. If that
metadata contains references to the application components, it must be
deployable when that metadata is namespaced (in a managed context or
namespaced scratch org) and when it is not (in an unmanaged context).

CumulusCI uses a strategy called namespace injection to support this
use case. Namespace injection is very powerful, and requires care from
the project team to ensure that metadata remains deployable in all
contexts.


Important

Projects that are building an org implementation or a non-namespaced
package do not have a namespace, or a distinction between managed and
unmanaged contexts. These projects typically don’t need to use
namespace injection.



Metadata files where a namespace is conditionally applied to components
for insertion into different contexts must replace the namespace with a
token, which CumulusCI replaces with the appropriate value or with an
empty string as appropriate to the context.


	%%%NAMESPACE%%% is replaced with the package’s namespace in any
context with a namespace (such as a namespaced org or managed org).
Otherwise, it remains blank.


	%%%NAMESPACED_ORG%%% is replaced with the package’s namespace in a namespaced org only, not in a managed installation. Otherwise, it remains blank.





Note

This token supports use cases where components in one unpackaged
metadata bundle refer to components in another, and the
dependency bundle acquires a namespace by being deployed into a
namespaced org.




	%%%NAMESPACE_OR_C%%% is replaced with the package’s namespace in
any context with a namespace (such as a namespaced org or managed
org). Otherwise, it is replaced with c, the generic namespace used
in Lightning components.


	%%%NAMESPACED_ORG_OR_C%%% is replaced with the package’s
namespace in a namespaced org only, not in a managed installation.
Otherwise, it is replaced with c, the generic namespace used in
Lightning components.


	%%%NAMESPACE_DOT%%% is replaced with the package’s namespace in any context with a namespace (such as a namespaced org or managed org) followed by a period (.) rather than two underscores.





Note

This token is used to construct references to packaged Record
Types and Apex classes.



An example case for namespace injection can be found in
Salesforce.org’s Nonprofit Success Pack
(NPSP) [https://github.com/SalesforceFoundation/NPSP] managed package. A
portion of metadata from NPSP is stored in a subdirectory under
unpackaged/post, meaning it’s deployed after the application
metadata. This metadata updates a Compact Layout on the Account
object, and references packaged metadata from the application as well as
from other managed packages. To deploy this as a managed context, this
metadata requires the use of namespace tokens to represent the npsp
namespace, letting CumulusCI automatically adapt the metadata to deploy
into managed and unmanaged contexts.

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
    <compactLayouts>
        <fullName>NPSP_Household_Account</fullName>
        <fields>Name</fields>
        <fields>npo02__TotalOppAmount__c</fields>
        <fields>%%%NAMESPACE%%%Number_of_Household_Members__c</fields>
        <label>NPSP Household Account</label>
    </compactLayouts>
</CustomObject>





Note that only the reference to the NPSP field
Number_of_Household_Members__c is tokenized. (When installed as part
of the managed package, this field appears as
npsp__Number_of_Household_Members__c.) References to NPSP’s own
managed package dependency, npo02, are not tokenized because this
metadata is always namespaced when installed.

If this metadata isn’t tokenized, it fails to deploy into an org
containing NPSP as a beta or released managed package (because in that
context the field Number_of_Household_Members__c is namespaced as
npsp__Number_of_Household_Members__c, and must be referred to as
such).


Note

The resolution of component references in namespaced scratch orgs and in
managed installations of the same metadata are not identical. Metadata
that is tokenized and deploys cleanly in a namespaced scratch org can
still fail in a managed context.




Configuration

Most CumulusCI tasks can intelligently determine whether or not to
inject the namespace based on the target org. For example, if tokenized
metadata is being deployed into an org that contains the project
installed as a managed package, CumulusCI knows to inject the namespace;
otherwise, it replaces namespace tokens with an empty string for an
unmanaged installation.

You can also specify explicit configuration for namespace injection in
circumstances where CumulusCI’s automatic functionality does not meet
your needs, such as when deploying tokenized metadata from another
project. If the metadata you are deploying has been tokenized, and you
want to deploy metadata with a namespace, use the
namespace_inject: <namespace> option to inject the namespace.

project:
    dependencies:
        - zip_url: https://github.com/SalesforceFoundation/EDA/archive/master.zip
          subfolder: EDA-master/dev_config/src/admin_config
          namespace_inject: hed





The metadata in the zip contains the string tokens %%%NAMESPACE%%% and
___NAMESPACE___ which is replaced with hed__ before the metadata is
deployed.

To deploy tokenized metadata without any namespace references, specify
both namespace_inject: <namespace> and unmanaged: True. In this
example, we do just this for the EDA dependency.

project:
    dependencies:
        - zip_url: https://github.com/SalesforceFoundation/EDA/archive/master.zip
          subfolder: EDA-master/dev_config/src/admin_config
          namespace_inject: hed
          unmanaged: True





The namespace tokens are replaced with an empty string instead of the
namespace, effectively stripping the tokens from the files and
filenames.






Retrieve Unpackaged Metadata

CumulusCI provides tasks to retrieve changes to unpackaged metadata, just as with packaged metadata.

When working with unpackaged metadata, it’s important to maintain
awareness of key considerations related to retrieving metadata that is
not part of the main application.


	Take care to separate your development between the different bundles
you wish to retrieve. For example, if you have changes to make in
the application as well as in unpackaged metadata, complete the
application changes first, retrieve them, and then make the
unpackaged changes and retrieve those. If you conflate changes to
components that live in separate elements of your project, it’s
difficult to untangle them.


	Whenever possible, build your unpackaged metadata in an org that
contains a beta or released managed package. By doing so, the
metadata contains namespaces when extracted, which CumulusCI easily
replaces with tokens when retrieving metadata. It’s difficult to
manually tokenize metadata that’s retrieved from an unmanaged org
without namespaces.




After building changes to unpackaged metadata in a managed org, retrieve
it using the retrieve_changes task with the additional
namespace_tokenize option, and use the path option to direct the
retrieved metadata to your desired unpackaged directory.

In the following example, we run the retrieve_changes task to retrieve
metadata changes into the unpackaged/config/qa subdirectory, and
replace references to the namespace npsp with the appropriate token.

$ cci task run retrieve_changes --path unpackaged/config/qa --namespace_tokenize npsp





Projects that use unpackaged metadata extensively define retrieve tasks
to streamline this process.

For example, here is a custom task that retrieves changes to specific
directory where metadata for QA configuration is kept.

retrieve_qa_config:
    description: Retrieves changes to QA configuration metadata
    class_path: cumulusci.tasks.salesforce.sourcetracking.RetrieveChanges
    options:
        path: unpackaged/config/qa
        namespace_tokenize: $project_config.project__package__namespace





The retrieve_changes task retrieves unpackaged metadata in a managed
org, but in this case you must manually insert namespace tokens to
deploy metadata in a managed or namespaced context.




Customize Config Flows

Projects often customize new tasks that deploy unpackaged/config
bundles, and harness these tasks in flows.

Projects that use unpackaged/config/qa often define a
deploy_qa_config task.

deploy_qa_config:
    description: Deploys additional fields used for QA purposes only
    class_path: cumulusci.tasks.salesforce.Deploy
    options:
        path: unpackaged/config/qa





This task is then added to relevant flows, such as config_qa.

config_qa:
    steps:
        3:
            task: deploy_qa_config





In most cases, CumulusCI intelligently determines whether or not to
inject the namespace. It’s rarely necessary to explicitly configure an
injection mode. If you need to do so, use the unmanaged option:

config_regression:
    steps:
        3:
            task: deploy_qa_config
            options:
                unmanaged: False





For more details on customizing tasks and flows, see the
Configure CumulusCI section.







            

          

      

      

    

  

  
    
    
    Reference
    

    
 
  

    
      
          
            
  
Reference



	Cheat Sheet

	Tasks Reference

	Flow Reference









            

          

      

      

    

  

  
    
    
    Cheat Sheet
    

    
 
  

    
      
          
            
  
Cheat Sheet

CumulusCI offers a great deal of functionality out of the box. This
cheat sheet is intended to provide a very brief summary of the most
important commands to start working in scratch orgs using CumulusCI,
using the basic flows and tasks supplied with the tool.


Naming and Manipulating Orgs

CumulusCI supplies a collection of named org configurations by default.
To see what org configurations are available, run cci org list. You
can provide those names to any of the commands in this guide. Common
examples include dev, qa, beta, and release. Org names are
associated with a scratch org definition file stored in the project’s
orgs directory. The definition file determines how the scratch org is
set up.

It’s not necessary to name your own orgs, but you may choose to do so
if, for example, you’d like to maintain multiple orgs of the same type.


Name a new scratch org

$ cci org scratch <configuration_name> <org_name>





This creates a new named org that inherits its setup from the
configuration name provided.




Get information about a scratch org

$ cci org info <org_name>





This includes information like the org’s domain, username, and password




Open a scratch org in your web browser

$ cci org browser <org_name>








Set a default scratch org

$ cci org default <org_name>





This asks CumulusCI to run all flows and tasks against the named org
unless otherwise specified. You don’t have to specify a default org.
You can always direct CumulusCI to use a specific org with the --org
option when you run a flow or a task.




Delete a scratch org, but leave the org name

$ cci org scratch_delete <org_name>





Run this command to delete a scratch org so that you can rebuild it,
while using the same name.




Remove an org name

$ cci org remove <org_name>





Note that you will not be able to remove built-in org names, but you can
remove names you created with cci org scratch.




Connect to a persistent org (sandbox, Developer Edition)

$ cci org connect <org_name>





Use the --sandbox option if this is a sandbox, or any org that uses
the test.salesforce.com login endpoint.






Building Orgs

Every CumulusCI project includes one or more flows that build an org for
a specific purpose or workflow. These flows may be customized for the
project, or may be unique to the project. Below are a collection of the
standard org building flows that you should expect to find in any
CumulusCI project.


Note

This section relies on concepts introduced in the Key Concepts section of the
documentation.




Note

Each flow should be run against a named org configuration using the
--org option, or allowed to run against a configured default org.




Flows for Building Orgs




qa_org

This flow builds an unmanaged org that is designed for QA use. Should be
used with an org whose configuration is qa.




dev_org

This flow builds an unmanaged org that is designed for development use.
Should be used with an org whose configuration is dev or
dev_namespaced




install_beta

This flow builds a managed org with the latest beta release installed.
Should be used with an org whose configuration is beta




install_prod

This flow builds a managed org with the latest release installed. Should
be used with an org whose configuration is release




regression_org

This flow builds a managed org that starts with the latest release
installed and is then upgraded to the latest beta to simulate a
subscriber upgrade. Should be used with an org whose configuration is
release

Your project may provide additional org-building flows. Consult the
project’s automation documentation for more details.


Caution

We do not recommend running an org-building flow against the same
scratch org multiple times. While this may work in some situations, in
many cases it will fail and/or leave the org in an inconsistent state.
If you need to rebuild an org, delete it first. If you need to redeploy
updated code into an org, see below.








Common Tasks


Note

Note that each task should be run against a named org configuration
using the --org option. If not specified, the task will run against a
configured default org.




Deploy updated code into an org

$ cci flow run deploy_unmanaged








Execute Apex unit tests in an org

$ cci task run run_tests








Execute Robot browser tests

$ cci task run robot








Review changes to metadata in an org

$ cci task run list_changes








Retrieve changes to local repository

$ cci task run retrieve_changes













            

          

      

      

    

  

  
    
    
    Tasks Reference
    

    
 
  

    
      
          
            
  
Tasks Reference


activate_flow

Description: Activates Flows identified by a given list of Developer Names

Class: cumulusci.tasks.salesforce.activate_flow.ActivateFlow


Command Syntax

$ cci task run activate_flow




Options


	--developer_names DEVELOPERNAMES
	Required

List of DeveloperNames to query in SOQL










add_page_layout_related_lists

Description: Adds specified Related List to one or more Page Layouts.

Class: cumulusci.tasks.metadata_etl.AddRelatedLists


Command Syntax

$ cci task run add_page_layout_related_lists




Options


	--related_list RELATEDLIST
	Required

Name of the Related List to include



	--fields FIELDS
	Optional

Array of field API names to include in the related list



	--exclude_buttons EXCLUDEBUTTONS
	Optional

Array of button names to suppress from the related list



	--custom_buttons CUSTOMBUTTONS
	Optional

Array of button names to add to the related list



	--api_names APINAMES
	Optional

List of API names of entities to affect



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix

Default: $project_config.project__package__namespace



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










add_page_layout_fields

Description: Adds specified Fields or Visualforce Pages to a Page Layout.

Class: cumulusci.tasks.metadata_etl.layouts.AddFieldsToPageLayout

Inserts the listed fields or Visualforce pages into page layouts
specified by API name.

If the targeted item already exists, the layout metadata is not modified.

You may supply a single position option, or multiple options for both pages and
fields. The first option to to be matched will be used.

Task option details:


	fields:



	api_name: [field API name]


	required: Boolean (default False)


	read_only: Boolean (default False, not compatible with required)


	position: (Optional: A list of single or multiple position options.)



	relative: [before | after | top | bottom]


	field: [api_name] (Use with relative: before, after)


	section: [index] (Use with relative: top, bottom)


	column: [first | last] (Use with relative: top, bottom)
















	pages:



	api_name: [Visualforce Page API name]


	height: int (Optional. Default: 200)


	show_label: Boolean (Optional. Default: False)


	show_scrollbars: Boolean (Optional. Default: False)


	width: 0-100% (Optional. Default: 100%)


	position: (Optional: A list of single or multiple position options.)



	relative: [before | after | top | bottom]


	field: [api_name] (Use with relative: before, after)


	section: [index] (Use with relative: top, bottom)


	column: [first | last] (Use with relative: top, bottom)



















Example Usage

task: add_page_layout_fields
options:
    api_names: "Contact-Contact Layout"
    fields:
      - api_name: Giving_Level__c
        position:
          - relative: bottom
            section: 0
            column: first
      - api_name: Previous_Giving_Level__c
        position:
          - relative: bottom
            section: 0
            column: last
ui_options:
    name: Add custom giving fields to Contact Layout








Command Syntax

$ cci task run add_page_layout_fields




Options


	--fields FIELDS
	Optional

List of fields. See task info for structure.



	--pages PAGES
	Optional

List of Visualforce Pages. See task info for structure.



	--api_names APINAMES
	Optional

List of API names of entities to affect



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










add_profile_ip_ranges

Description: Adds (or optionally replaces) IP Login Ranges to the specified Profiles.

Class: cumulusci.tasks.metadata_etl.permissions.AddIPRanges


Command Syntax

$ cci task run add_profile_ip_ranges




Options


	--ranges RANGES
	Required

A list of IP ranges, specified as dicts with the keys ‘description’ (optional) and either ‘start_address’ and ‘end_address’ or ‘network’ (in CIDR notation).



	--replace REPLACE
	Optional

If True, replace all existing ranges. Otherwise, just add ranges. Default is False.










add_standard_value_set_entries

Description: Adds specified picklist entries to a Standard Value Set.

Class: cumulusci.tasks.metadata_etl.AddValueSetEntries


Example Usage

task: add_standard_value_set_entries
options:
    api_names: CaseOrigin
    entries:
        - fullName: New Account
          label: New Account
        - fullName: Questionable Contact
          label: Questionable Contact
    ui_options:
        name: Add values to Case Origin picklist








Command Syntax

$ cci task run add_standard_value_set_entries




Options


	--api_names APINAMES
	Required

List of API names of StandardValueSets to affect, such as ‘OpportunityStage’, ‘AccountType’, ‘CaseStatus’, ‘LeadStatus’



	--entries ENTRIES
	Required

Array of standardValues to insert. Each standardValue should contain the keys ‘fullName’, the API name of the entry, and ‘label’, the user-facing label. OpportunityStage entries require the additional keys ‘closed’, ‘won’, ‘forecastCategory’, and ‘probability’; CaseStatus entries require ‘closed’; LeadStatus entries require ‘converted’.



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix

Default: $project_config.project__package__namespace



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










add_picklist_entries

Description: Adds specified picklist entries to a custom picklist field.

Class: cumulusci.tasks.metadata_etl.picklists.AddPicklistEntries


Command Syntax

$ cci task run add_picklist_entries




Options


	--picklists PICKLISTS
	Required

List of picklists to affect, in Object__c.Field__c form.



	--entries ENTRIES
	Required

Array of picklist values to insert. Each value should contain the keys ‘fullName’, the API name of the entry, and ‘label’, the user-facing label. Optionally, specify default: True on exactly one entry to make that value the default. Any existing values will not be affected other than setting the default (labels of existing entries are not changed). To order values, include the ‘add_before’ key. This will insert the new value before the existing value with the given API name, or at the end of the list if not present.



	--record_types RECORDTYPES
	Optional

List of Record Type developer names for which the new values should be available. If any of the entries have default: True, they are also made default for these Record Types. Any Record Types not present in the target org will be ignored, and * is a wildcard. Default behavior is to do nothing.



	--api_names APINAMES
	Optional

List of API names of entities to affect



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix

Default: $project_config.project__package__namespace



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










add_fields_to_field_set

Description: Adds specified fields to a given field set.

Class: cumulusci.tasks.metadata_etl.field_sets.AddFieldsToFieldSet


Command Syntax

$ cci task run add_fields_to_field_set




Options


	--field_set FIELDSET
	Required

Name of field set to affect, in Object__c.FieldSetName form.



	--fields FIELDS
	Required

Array of field API names to add to the field set. Can include related fields using AccountId.Name or Lookup__r.CustomField__c style syntax.



	--api_names APINAMES
	Optional

List of API names of entities to affect



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










add_permission_set_perms

Description: Adds specified Apex class access and Field-Level Security to a Permission Set.

Class: cumulusci.tasks.metadata_etl.AddPermissionSetPermissions


Command Syntax

$ cci task run add_permission_set_perms




Options


	--field_permissions FIELDPERMISSIONS
	Optional

Array of fieldPermissions objects to upsert into permission_set.  Each fieldPermission requires the following attributes: ‘field’: API Name of the field including namespace; ‘readable’: boolean if field can be read; ‘editable’: boolean if field can be edited



	--class_accesses CLASSACCESSES
	Optional

Array of classAccesses objects to upsert into permission_set.  Each classAccess requires the following attributes: ‘apexClass’: Name of Apex Class.  If namespaced, make sure to use the form “namespace__ApexClass”; ‘enabled’: boolean if the Apex Class can be accessed.



	--api_names APINAMES
	Optional

List of API names of entities to affect



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix

Default: $project_config.project__package__namespace



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










add_record_action_list_item

Description: Adds the specified ‘Record’ context Lightning button/action to the provided page layout.

Class: cumulusci.tasks.metadata_etl.layouts.AddRecordPlatformActionListItem

Inserts the targeted lightning button/action into specified
layout’s PlatformActionList with a ‘Record’ actionListContext.
- If the targeted lightning button/action already exists,


the layout metadata is not modified.





	
	If there is no ‘Record’ context PlatformActionList,
	we will generate one and add the specified action









Task definition example:


dev_inject_apply_quick_action_into_account_layout:
group: “Demo config and storytelling”
description: Adds an Apply Quick Action button to the beggining of the button list on the Experiences Account Layout.
class_path: tasks.layouts.InsertRecordPlatformActionListItem
options:


api_names: “Account-%%%NAMESPACE%%%Experiences Account Layout”
action_name: “Account.Apply”
action_type: QuickAction
place_first: True







Reference Documentation:
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_layouts.htm#PlatformActionList


Command Syntax

$ cci task run add_record_action_list_item




Options


	--action_type ACTIONTYPE
	Required

platformActionListItems.actionType like ‘QuickAction’ or ‘CustomButton’



	--action_name ACTIONNAME
	Required

platformActionListItems.actionName. The API name for the action to be added.



	--place_first PLACEFIRST
	Optional

When ‘True’ the specified Record platformActionListItem will be inserted before any existing on the layout. Default is ‘False’



	--api_names APINAMES
	Optional

List of API names of entities to affect



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










assign_compact_layout

Description: Assigns the Compact Layout specified in the ‘value’ option to the Custom Objects in ‘api_names’ option.

Class: cumulusci.tasks.metadata_etl.UpdateMetadataFirstChildTextTask

Metadata ETL task to update a single child element’s text within metadata XML.

If the child doesn’t exist, the child is created and appended to the Metadata.   Furthermore, the value option is namespaced injected if the task is properly configured.


Example: Assign a Custom Object’s Compact Layout

Researching CustomObject [https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/customobject.htm] in the Metadata API documentation or even retrieving the CustomObject’s Metadata for inspection, we see the compactLayoutAssignment Field.  We want to assign a specific Compact Layout for our Custom Object, so we write the following CumulusCI task in our project’s cumulusci.yml.

tasks:
    assign_compact_layout:
        class_path: cumulusci.tasks.metadata_etl.UpdateMetadataFirstChildTextTask
        options:
            managed: False
            namespace_inject: $project_config.project__package__namespace
            entity: CustomObject
            api_names: OurCustomObject__c
            tag: compactLayoutAssignment
            value: "%%%NAMESPACE%%%DifferentCompactLayout"
            # We include a namespace token so it's easy to use this task in a managed context.





Suppose the original CustomObject metadata XML looks like:

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
    ...
    <label>Our Custom Object</label>
    <compactLayoutAssignment>OriginalCompactLayout</compactLayoutAssignment>
    ...
</CustomObject>





After running cci task run assign_compact_layout, the CustomObject metadata XML is deployed as:

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
    ...
    <label>Our Custom Object</label>
    <compactLayoutAssignment>DifferentCompactLayout</compactLayoutAssignment>
    ...
</CustomObject>








Command Syntax

$ cci task run assign_compact_layout




Options


	--metadata_type METADATATYPE
	Required

Metadata Type

Default: CustomObject



	--tag TAG
	Required

Targeted tag. The text of the first instance of this tag within the metadata entity will be updated.

Default: compactLayoutAssignment



	--value VALUE
	Required

Desired value to set for the targeted tag’s text. This value is namespace-injected.



	--api_names APINAMES
	Optional

List of API names of entities to affect



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix

Default: $project_config.project__package__namespace



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










assign_permission_sets

Description: Assigns specified Permission Sets to the current user, if not already assigned.

Class: cumulusci.tasks.salesforce.users.permsets.AssignPermissionSets

Assigns Permission Sets whose Names are in api_names to either the default org user or the user whose Alias is user_alias. This task skips assigning Permission Sets that are already assigned.


Command Syntax

$ cci task run assign_permission_sets




Options


	--api_names APINAMES
	Required

API Names of desired Permission Sets, separated by commas.



	--user_alias USERALIAS
	Optional

Target user aliases, separated by commas. Defaults to the current running user.










assign_permission_set_groups

Description: Assigns specified Permission Set Groups to the current user, if not already assigned.

Class: cumulusci.tasks.salesforce.users.permsets.AssignPermissionSetGroups

Assigns Permission Set Groups whose Developer Names are in api_names to either the default org user or the user whose Alias is user_alias. This task skips assigning Permission Set Groups that are already assigned.


Command Syntax

$ cci task run assign_permission_set_groups




Options


	--api_names APINAMES
	Required

API Developer Names of desired Permission Set Groups, separated by commas.



	--user_alias USERALIAS
	Optional

Alias of target user (if not the current running user, the default).










assign_permission_set_licenses

Description: Assigns specified Permission Set Licenses to the current user, if not already assigned.

Class: cumulusci.tasks.salesforce.users.permsets.AssignPermissionSetLicenses

Assigns Permission Set Licenses whose Developer Names are in api_names to either the default org user or the user whose Alias is user_alias. This task skips assigning Permission Set Licenses that are already assigned.

Permission Set Licenses are usually associated with a Permission Set, and assigning the Permission Set usually assigns the associated Permission Set License automatically.  However, in non-namespaced developer scratch orgs, assigning the associated Permission Set may not automatically assign the Permission Set License, and this task will ensure the Permission Set Licenses are assigned.


Command Syntax

$ cci task run assign_permission_set_licenses




Options


	--api_names APINAMES
	Required

API Developer Names of desired Permission Set Licenses, separated by commas.



	--user_alias USERALIAS
	Optional

Alias of target user (if not the current running user, the default).










batch_apex_wait

Description: Waits on a batch apex or queueable apex job to finish.

Class: cumulusci.tasks.apex.batch.BatchApexWait


Command Syntax

$ cci task run batch_apex_wait




Options


	--class_name CLASSNAME
	Required

Name of the Apex class to wait for.



	--poll_interval POLLINTERVAL
	Optional

Seconds to wait before polling for batch or queueable job completion. Defaults to 10 seconds.










check_my_domain_active

Description: Runs as a preflight check to determine whether My Domain is active.

Class: cumulusci.tasks.preflight.settings.CheckMyDomainActive


Command Syntax

$ cci task run check_my_domain_active






check_sobjects_available

Description: Runs as a preflight check to determine whether specific sObjects are available.

Class: cumulusci.tasks.preflight.sobjects.CheckSObjectsAvailable

As a MetaDeploy preflight check, validates that an sObject is present in the schema.


The task can be used as a preflight check thus:

3:
    task: insert_sobject_records
    checks:
        - when: "'ContentNote' not in tasks.check_sobjects_available()"
          action: error
          message: "Enhanced Notes are not turned on."









Command Syntax

$ cci task run check_sobjects_available






check_sobject_permissions

Description: Runs as a preflight check to determine whether specific sObjects are permissioned as desired (options are required).

Class: cumulusci.tasks.preflight.sobjects.CheckSObjectPerms

As a MetaDeploy preflight check, validates that an sObject’s permissions are in the expected state.


For example, specify:

check_sobject_permissions:
    options:
        Account:
            createable: True
            updateable: False
        Contact:
            createable: False





to validate that the Account object is createable but not updateable, and the Contact object is not createable.
The output is True if all sObjects and permissions are present and matching the specification.

Given the above configuration, the task can be used as a preflight check in a MetaDeploy plan:

3:
    task: insert_sobject_records
    checks:
        - when: "not tasks.check_sobject_permissions()"
          action: error
          message: "sObject permissions are not configured correctly."









Command Syntax

$ cci task run check_sobject_permissions




Options


	--permissions PERMISSIONS
	Required

The object permissions to check. Each key should be an sObject API name, whose value is a map of describe keys, such as queryable and createable, to their desired values (True or False). The output is True if all sObjects and permissions are present and matching the specification. See the task documentation for examples.










check_advanced_currency_management

Description: Runs as a preflight check to determine whether Advanced Currency Management is active (True result means the feature is active).

Class: cumulusci.tasks.preflight.sobjects.CheckSObjectPerms

As a MetaDeploy preflight check, validates that an sObject’s permissions are in the expected state.


For example, specify:

check_sobject_permissions:
    options:
        Account:
            createable: True
            updateable: False
        Contact:
            createable: False





to validate that the Account object is createable but not updateable, and the Contact object is not createable.
The output is True if all sObjects and permissions are present and matching the specification.

Given the above configuration, the task can be used as a preflight check in a MetaDeploy plan:

3:
    task: insert_sobject_records
    checks:
        - when: "not tasks.check_sobject_permissions()"
          action: error
          message: "sObject permissions are not configured correctly."









Command Syntax

$ cci task run check_advanced_currency_management




Options


	--permissions PERMISSIONS
	Required

The object permissions to check. Each key should be an sObject API name, whose value is a map of describe keys, such as queryable and createable, to their desired values (True or False). The output is True if all sObjects and permissions are present and matching the specification. See the task documentation for examples.

Default: {‘DatedConversionRate’: {‘createable’: True}}










check_org_wide_defaults

Description: Runs as a preflight check to validate Organization-Wide Defaults.

Class: cumulusci.tasks.preflight.sobjects.CheckSObjectOWDs

As a MetaDeploy preflight check, validates that an sObject’s Org-Wide Defaults are in the expected state.


For example, specify:

check_org_wide_defaults:
    options:
        org_wide_defaults:
            - api_name: Account
              internal_sharing_model: Private
              external_sharing_model: Private
            - api_name: Contact
              internal_sharing_model: Private





to validate that the Account object has Private internal and external OWDs, and Contact a Private internal model.
The output is True if all sObjects and permissions are present and matching the specification.

Given the above configuration, the task can be used as a preflight check in a MetaDeploy plan:

3:
    task: insert_sobject_records
    checks:
        - when: "not tasks.check_org_wide_defaults()"
          action: error
          message: "Org-Wide Defaults are not configured correctly."









Command Syntax

$ cci task run check_org_wide_defaults




Options


	--org_wide_defaults ORGWIDEDEFAULTS
	Required

The Organization-Wide Defaults to check, organized as a list with each element containing the keys api_name, internal_sharing_model, and external_sharing_model. NOTE: you must have External Sharing Model turned on in Sharing Settings to use the latter feature. Checking External Sharing Model when it is turned off will fail the preflight.










check_org_settings_value

Description: Runs as a preflight check to validate organization settings.

Class: cumulusci.tasks.preflight.settings.CheckSettingsValue


Command Syntax

$ cci task run check_org_settings_value




Options


	--settings_type SETTINGSTYPE
	Required

The API name of the Settings entity to be checked, such as ChatterSettings.



	--settings_field SETTINGSFIELD
	Required

The API name of the field on the Settings entity to check.



	--value VALUE
	Required

The value to check for



	--treat_missing_as_failure TREATMISSINGASFAILURE
	Optional

If True, treat a missing Settings entity as a preflight failure, instead of raising an exception. Defaults to False.










check_chatter_enabled

Description: Runs as a preflight check to validate Chatter is enabled.

Class: cumulusci.tasks.preflight.settings.CheckSettingsValue


Command Syntax

$ cci task run check_chatter_enabled




Options


	--settings_type SETTINGSTYPE
	Required

The API name of the Settings entity to be checked, such as ChatterSettings.

Default: ChatterSettings



	--settings_field SETTINGSFIELD
	Required

The API name of the field on the Settings entity to check.

Default: IsChatterEnabled



	--value VALUE
	Required

The value to check for

Default: True



	--treat_missing_as_failure TREATMISSINGASFAILURE
	Optional

If True, treat a missing Settings entity as a preflight failure, instead of raising an exception. Defaults to False.










check_enhanced_notes_enabled

Description: Preflight check to validate that Enhanced Notes are enabled.

Class: cumulusci.tasks.preflight.settings.CheckSettingsValue


Command Syntax

$ cci task run check_enhanced_notes_enabled




Options


	--settings_type SETTINGSTYPE
	Required

The API name of the Settings entity to be checked, such as ChatterSettings.

Default: EnhancedNotesSettings



	--settings_field SETTINGSFIELD
	Required

The API name of the field on the Settings entity to check.

Default: IsEnhancedNotesEnabled



	--value VALUE
	Required

The value to check for

Default: True



	--treat_missing_as_failure TREATMISSINGASFAILURE
	Optional

If True, treat a missing Settings entity as a preflight failure, instead of raising an exception. Defaults to False.










custom_settings_value_wait

Description: Waits for a specific field value on the specified custom settings object and field

Class: cumulusci.tasks.salesforce.custom_settings_wait.CustomSettingValueWait


Command Syntax

$ cci task run custom_settings_value_wait




Options


	--object OBJECT
	Required

Name of the Hierarchical Custom Settings object to query. Can include the %%%NAMESPACE%%% token.



	--field FIELD
	Required

Name of the field on the Custom Settings to query. Can include the %%%NAMESPACE%%% token.



	--value VALUE
	Required

Value of the field to wait for (String, Integer or Boolean).



	--managed MANAGED
	Optional

If True, will insert the project’s namespace prefix.  Defaults to False or no namespace.



	--namespaced NAMESPACED
	Optional

If True, the %%%NAMESPACE%%% token will get replaced with the namespace prefix for the object and field.Defaults to False.



	--poll_interval POLLINTERVAL
	Optional

Seconds to wait before polling for batch job completion. Defaults to 10 seconds.










command

Description: Run an arbitrary command

Class: cumulusci.tasks.command.Command

Example Command-line Usage:
cci task run command -o command "echo 'Hello command task!'"

Example Task to Run Command:

hello_world:
    description: Says hello world
    class_path: cumulusci.tasks.command.Command
    options:
        command: echo 'Hello World!'






Command Syntax

$ cci task run command




Options


	--command COMMAND
	Required

The command to execute



	--pass_env PASSENV
	Required

If False, the current environment variables will not be passed to the child process. Defaults to True



	--dir DIR
	Optional

If provided, the directory where the command should be run from.



	--env ENV
	Optional

Environment variables to set for command. Must be flat dict, either as python dict from YAML or as JSON string.



	--interactive INTERACTIVE
	Optional

If True, the command will use stderr, stdout, and stdin of the main process.Defaults to False.










composite_request

Description: Execute a series of REST API requests in a single call

Class: cumulusci.tasks.salesforce.composite.CompositeApi

This task is a wrapper for Composite REST API calls. Given a list of JSON files
(one request body per file), POST each and process the returned composite
result. Files are processed in the order given by the data_files option.

In addition, this task will process the request body and replace namespace
(%%%NAMESPACE%%%) and user ID (%%%USERID%%%) tokens. To avoid username
collisions, use the randomize_username option to replace the top-level
domains in any Username field with a random string.

When the top-level allOrNone property for the request is set to true a
SalesforceException is raised if an error is returned for any subrequest,
otherwise partial successes will not raise an exception.


Example Task Definition

tasks:
    example_composite_request:
        class_path: cumulusci.tasks.salesforce.composite.CompositeApi
        options:
           data_files:
               - "datasets/composite/users.json"
               - "datasets/composite/setup_objects.json"








Command Syntax

$ cci task run composite_request




Options


	--data_files DATAFILES
	Required

A list of paths, where each path is a JSON file containing a composite request body.



	--managed MANAGED
	Optional

If True, replaces namespace tokens with the namespace prefix.



	--namespaced NAMESPACED
	Optional

If True, replaces namespace tokens with the namespace prefix.



	--randomize_username RANDOMIZEUSERNAME
	Optional

If True, randomize the TLD for any ‘Username’ fields.










create_community

Description: Creates a Community in the target org using the Connect API

Class: cumulusci.tasks.salesforce.CreateCommunity

Create a Salesforce Community via the Connect API.

Specify the template “VF Template” for Visualforce Tabs community,
or the name for a specific desired template


Command Syntax

$ cci task run create_community




Options


	--template TEMPLATE
	Required

Name of the template for the community.



	--name NAME
	Required

Name of the community.



	--description DESCRIPTION
	Optional

Description of the community.



	--url_path_prefix URLPATHPREFIX
	Optional

URL prefix for the community.



	--retries RETRIES
	Optional

Number of times to retry community creation request



	--timeout TIMEOUT
	Optional

Time to wait, in seconds, for the community to be created



	--skip_existing SKIPEXISTING
	Optional

If True, an existing community with the same name will not raise an exception.










connected_app

Description: Creates the Connected App needed to use persistent orgs in the CumulusCI keychain

Class: cumulusci.tasks.connectedapp.CreateConnectedApp


Command Syntax

$ cci task run connected_app




Options


	--label LABEL
	Required

The label for the connected app.  Must contain only alphanumeric and underscores

Default: CumulusCI



	--email EMAIL
	Optional

The email address to associate with the connected app.  Defaults to email address from the github service if configured.



	--username USERNAME
	Optional

Create the connected app in a different org.  Defaults to the defaultdevhubusername configured in sfdx.



	--connect CONNECT
	Optional

If True, the created connected app will be stored as the CumulusCI connected_app service in the keychain.

Default: True



	--overwrite OVERWRITE
	Optional

If True, any existing connected_app service in the CumulusCI keychain will be overwritten.  Has no effect if the connect option is False.










create_network_member_groups

Description: Creates NetworkMemberGroup records which grant access to an Experience Site (Community) for specified Profiles or Permission Sets

Class: cumulusci.tasks.salesforce.network_member_group.CreateNetworkMemberGroups


Command Syntax

$ cci task run create_network_member_groups




Options


	--network_name NETWORKNAME
	Required

Name of Network to add NetworkMemberGroup children records.



	--profile_names PROFILENAMES
	Optional

List of Profile Names to add as NetworkMemberGroups for this Network.



	--permission_set_names PERMISSIONSETNAMES
	Optional

List of PermissionSet Names to add as NetworkMemberGroups for this Network.










insert_record

Description: Inserts a record of any sObject using the REST API

Class: cumulusci.tasks.salesforce.insert_record.InsertRecord

For example:

cci task run insert_record –org dev -o object PermissionSet -o values Name:HardDelete,PermissionsBulkApiHardDelete:true


Command Syntax

$ cci task run insert_record




Options


	--object OBJECT
	Required

An sObject type to insert



	--values VALUES
	Required

Field names and values in the format ‘aa:bb,cc:dd’, or a YAML dict in cumulusci.yml.



	--tooling TOOLING
	Optional

If True, use the Tooling API instead of REST API.










create_package

Description: Creates a package in the target org with the default package name for the project

Class: cumulusci.tasks.salesforce.CreatePackage


Command Syntax

$ cci task run create_package




Options


	--package PACKAGE
	Required

The name of the package to create.  Defaults to project__package__name



	--api_version APIVERSION
	Required

The api version to use when creating the package.  Defaults to project__package__api_version










create_package_version

Description: Uploads a 2nd-generation package (2GP) version

Class: cumulusci.tasks.create_package_version.CreatePackageVersion


Command Syntax

$ cci task run create_package_version




Options


	--package_type PACKAGETYPE
	Required

Package type (Unlocked or Managed)



	--package_name PACKAGENAME
	Optional

Name of package



	--namespace NAMESPACE
	Optional

Package namespace



	--version_name VERSIONNAME
	Optional

Version name



	--version_base VERSIONBASE
	Optional

The version number to use as a base before incrementing. Optional; defaults to the highest existing version number of this package. Can be set to latest_github_release to use the version of the most recent release published to GitHub.



	--version_type VERSIONTYPE
	Optional

The part of the version number to increment. Options are major, minor, patch, build.  Defaults to build



	--skip_validation SKIPVALIDATION
	Optional

If true, skip validation of the package version. Default: false. Skipping validation creates packages more quickly, but they cannot be promoted for release.



	--org_dependent ORGDEPENDENT
	Optional

If true, create an org-dependent unlocked package. Default: false.



	--post_install_script POSTINSTALLSCRIPT
	Optional

Post-install script (for managed packages)



	--uninstall_script UNINSTALLSCRIPT
	Optional

Uninstall script (for managed packages)



	--force_upload FORCEUPLOAD
	Optional

If true, force creating a new package version even if one with the same contents already exists



	--static_resource_path STATICRESOURCEPATH
	Optional

The path where decompressed static resources are stored. Any subdirectories found will be zipped and added to the staticresources directory of the build.



	--ancestor_id ANCESTORID
	Optional

The 04t Id to use for the ancestor of this package. Optional; defaults to no ancestor specified. Can be set to latest_github_release to use the most recent production version published to GitHub.



	--resolution_strategy RESOLUTIONSTRATEGY
	Optional

The name of a sequence of resolution_strategy (from project__dependency_resolutions) to apply to dynamic dependencies. Defaults to ‘production’.



	--create_unlocked_dependency_packages CREATEUNLOCKEDDEPENDENCYPACKAGES
	Optional

If True, create unlocked packages for unpackaged metadata in this project and dependencies. Defaults to False.










create_managed_src

Description: Modifies the src directory for managed deployment.  Strips //cumulusci-managed from all Apex code

Class: cumulusci.tasks.metadata.managed_src.CreateManagedSrc

Apex classes which use the @deprecated annotation can comment
it out using //cumulusci-managed so that it can be deployed as
part of unmanaged metadata, where this annotation is not allowed.
This task is for use when deploying to a packaging org to
remove the comment so that the annotation takes effect.


Command Syntax

$ cci task run create_managed_src




Options


	--path PATH
	Required

The path containing metadata to process for managed deployment

Default: src



	--revert_path REVERTPATH
	Required

The path to copy the original metadata to for the revert call

Default: src.orig










create_permission_set

Description: Creates a Permission Set with specified User Permissions and assigns it to the running user.

Class: cumulusci.tasks.salesforce.create_permission_sets.CreatePermissionSet


Command Syntax

$ cci task run create_permission_set




Options


	--api_name APINAME
	Required

API name of generated Permission Set



	--user_permissions USERPERMISSIONS
	Required

List of User Permissions to include in the Permission Set.



	--label LABEL
	Optional

Label of generated Permission Set










create_bulk_data_permission_set

Description: Creates a Permission Set with the Hard Delete and Set Audit Fields user permissions. NOTE: the org setting to allow Set Audit Fields must be turned on.

Class: cumulusci.tasks.salesforce.create_permission_sets.CreatePermissionSet


Command Syntax

$ cci task run create_bulk_data_permission_set




Options


	--api_name APINAME
	Required

API name of generated Permission Set

Default: CumulusCI_Bulk_Data



	--user_permissions USERPERMISSIONS
	Required

List of User Permissions to include in the Permission Set.

Default: [‘PermissionsBulkApiHardDelete’, ‘PermissionsCreateAuditFields’]



	--label LABEL
	Optional

Label of generated Permission Set

Default: CumulusCI Bulk Data










create_unmanaged_ee_src

Description: Modifies the src directory for unmanaged deployment to an EE org

Class: cumulusci.tasks.metadata.ee_src.CreateUnmanagedEESrc


Command Syntax

$ cci task run create_unmanaged_ee_src




Options


	--path PATH
	Required

The path containing metadata to process for managed deployment

Default: src



	--revert_path REVERTPATH
	Required

The path to copy the original metadata to for the revert call

Default: src.orig










create_blank_profile

Description: Creates a blank profile, or a profile with no permissions

Class: cumulusci.tasks.salesforce.profiles.CreateBlankProfile


Command Syntax

$ cci task run create_blank_profile




Options


	--name NAME
	Required

The name of the the new profile



	--license LICENSE
	Optional

The name of the salesforce license to use in the profile, defaults to ‘Salesforce’

Default: Salesforce



	--license_id LICENSEID
	Optional

The ID of the salesforce license to use in the profile.



	--description DESCRIPTION
	Optional

The description of the the new profile










delete_data

Description: Query existing data for a specific sObject and perform a Bulk API delete of all matching records.

Class: cumulusci.tasks.bulkdata.DeleteData


Command Syntax

$ cci task run delete_data




Options


	--objects OBJECTS
	Required

A list of objects to delete records from in order of deletion.  If passed via command line, use a comma separated string



	--where WHERE
	Optional

A SOQL where-clause (without the keyword WHERE). Only available when ‘objects’ is length 1.



	--hardDelete HARDDELETE
	Optional

If True, perform a hard delete, bypassing the Recycle Bin. Note that this requires the Bulk API Hard Delete permission. Default: False



	--ignore_row_errors IGNOREROWERRORS
	Optional

If True, allow the operation to continue even if individual rows fail to delete.



	--inject_namespaces INJECTNAMESPACES
	Optional

If True, the package namespace prefix will be automatically added to (or removed from) objects and fields based on the name used in the org. Defaults to True.



	--api API
	Optional

The desired Salesforce API to use, which may be ‘rest’, ‘bulk’, or ‘smart’ to auto-select based on record volume. The default is ‘smart’.










update_data

Description: Update records of an sObject matching a where-clause.

Class: cumulusci.tasks.bulkdata.update_data.UpdateData


Command Syntax

$ cci task run update_data




Options


	--object OBJECT
	Required

An SObject



	--recipe RECIPE
	Required

Snowfakery recipe to be executed on each row



	--where WHERE
	Optional

A SOQL where-clause (without the keyword WHERE).



	--api API
	Optional

The desired Salesforce API to use, which may be ‘rest’, ‘bulk’, or ‘smart’ to auto-select based on record volume. The default is ‘smart’.



	--fields FIELDS
	Optional

Fields to download as input to the Snowfakery recipe



	--recipe_options RECIPEOPTIONS
	Optional

Pass values to override options in the format VAR1:foo,VAR2:bar


Example: –recipe_options weight:10,color:purple






	--ignore_row_errors IGNOREROWERRORS
	Optional

If True, allow the operation to continue even if individual rows fail to delete.










deploy

Description: Deploys the src directory of the repository to the org

Class: cumulusci.tasks.salesforce.Deploy


Command Syntax

$ cci task run deploy




Options


	--path PATH
	Required

The path to the metadata source to be deployed

Default: src



	--unmanaged UNMANAGED
	Optional

If True, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix



	--namespace_strip NAMESPACESTRIP
	Optional

If set, all namespace prefixes for the namespace specified are stripped from files and filenames



	--check_only CHECKONLY
	Optional

If True, performs a test deployment (validation) of components without saving the components in the target org



	--test_level TESTLEVEL
	Optional

Specifies which tests are run as part of a deployment. Valid values: NoTestRun, RunLocalTests, RunAllTestsInOrg, RunSpecifiedTests.



	--specified_tests SPECIFIEDTESTS
	Optional

Comma-separated list of test classes to run upon deployment. Applies only with test_level set to RunSpecifiedTests.



	--static_resource_path STATICRESOURCEPATH
	Optional

The path where decompressed static resources are stored.  Any subdirectories found will be zipped and added to the staticresources directory of the build.



	--namespaced_org NAMESPACEDORG
	Optional

If True, the tokens %%%NAMESPACED_ORG%%% and ___NAMESPACED_ORG___ will get replaced with the namespace.  The default is false causing those tokens to get stripped and replaced with an empty string.  Set this if deploying to a namespaced scratch org or packaging org.



	--clean_meta_xml CLEANMETAXML
	Optional

Defaults to True which strips the <packageVersions/> element from all meta.xml files.  The packageVersion element gets added automatically by the target org and is set to whatever version is installed in the org.  To disable this, set this option to False










deploy_marketing_cloud_package

Description: Deploys a package zip file to a Marketing Cloud Tenant via the Marketing Cloud Package Manager API.

Class: cumulusci.tasks.marketing_cloud.deploy.MarketingCloudDeployTask


Command Syntax

$ cci task run deploy_marketing_cloud_package




Options


	--package_zip_file PACKAGEZIPFILE
	Required

Path to the package zipfile that will be deployed.



	--custom_inputs CUSTOMINPUTS
	Optional

Specify custom inputs to the deployment task. Takes a mapping from input key to input value (e.g. ‘companyName:Acme,companyWebsite:https://www.salesforce.org:8080’).



	--name NAME
	Optional

The name to give to this particular deploy call. Defaults to a universally unique identifier.



	--endpoint ENDPOINT
	Optional

Override the default endpoint for the Marketing Cloud package manager API (optional)










marketing_cloud_create_subscriber_attribute

Description: Creates a Subscriber Attribute via the Marketing Cloud SOAP API.

Class: cumulusci.tasks.marketing_cloud.api.CreateSubscriberAttribute


Command Syntax

$ cci task run marketing_cloud_create_subscriber_attribute




Options


	--attribute_name ATTRIBUTENAME
	Required

The name of the Subscriber Attribute to deploy via the Marketing Cloud API.










marketing_cloud_create_user

Description: Creates a new User via the Marketing Cloud SOAP API.

Class: cumulusci.tasks.marketing_cloud.api.CreateUser


Command Syntax

$ cci task run marketing_cloud_create_user




Options


	--parent_bu_mid PARENTBUMID
	Required

Specify the MID for Parent BU.



	--default_bu_mid DEFAULTBUMID
	Required

Set MID for BU to use as default (can be same as the parent).



	--user_email USEREMAIL
	Required

Set the User’s email.



	--user_password USERPASSWORD
	Required

Set the User’s password.



	--user_username USERUSERNAME
	Required

Set the User’s username. Not the same as their name.



	--external_key EXTERNALKEY
	Optional

Set the User’s external key.



	--user_name USERNAME
	Optional

Set the User’s name. Not the same as their username.



	--role_id ROLEID
	Optional

Assign a Role to the new User, specified as an ID. IDs for system defined roles located here: https://developer.salesforce.com/docs/atlas.en-us.noversion.mc-apis.meta/mc-apis/setting_user_permissions_via_the_web_services_api.htm



	--activate_if_existing ACTIVATEIFEXISTING
	Optional

Activate the user if it already exists in an inactive state. Default: False










marketing_cloud_get_user_info

Description: Return user info retrieved from the /userinfo endpoint of the Marketing Cloud REST API.

Class: cumulusci.tasks.marketing_cloud.get_user_info.GetUserInfoTask


Command Syntax

$ cci task run marketing_cloud_get_user_info






marketing_cloud_update_user_role

Description: Assigns a Role to an existing User via the Marketing Cloud SOAP API.

Class: cumulusci.tasks.marketing_cloud.api.UpdateUserRole


Command Syntax

$ cci task run marketing_cloud_update_user_role




Options


	--account_mid ACCOUNTMID
	Required

Specify the Account MID.



	--user_email USEREMAIL
	Required

Specify the User’s email.



	--user_password USERPASSWORD
	Required

Specify the User’s password.



	--role_id ROLEID
	Required

Assign a Role to the User, specified as an ID. IDs for system defined roles located here: https://developer.salesforce.com/docs/atlas.en-us.noversion.mc-apis.meta/mc-apis/setting_user_permissions_via_the_web_services_api.htm



	--external_key EXTERNALKEY
	Optional

Specify the User’s external key.



	--user_name USERNAME
	Optional

Specify the User’s name. Not the same as their username.










deploy_pre

Description: Deploys all metadata bundles under unpackaged/pre/

Class: cumulusci.tasks.salesforce.DeployBundles


Command Syntax

$ cci task run deploy_pre




Options


	--path PATH
	Required

The path to the parent directory containing the metadata bundles directories

Default: unpackaged/pre



	--unmanaged UNMANAGED
	Optional

If True, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix



	--namespace_strip NAMESPACESTRIP
	Optional

If set, all namespace prefixes for the namespace specified are stripped from files and filenames



	--check_only CHECKONLY
	Optional

If True, performs a test deployment (validation) of components without saving the components in the target org



	--test_level TESTLEVEL
	Optional

Specifies which tests are run as part of a deployment. Valid values: NoTestRun, RunLocalTests, RunAllTestsInOrg, RunSpecifiedTests.



	--specified_tests SPECIFIEDTESTS
	Optional

Comma-separated list of test classes to run upon deployment. Applies only with test_level set to RunSpecifiedTests.



	--static_resource_path STATICRESOURCEPATH
	Optional

The path where decompressed static resources are stored.  Any subdirectories found will be zipped and added to the staticresources directory of the build.



	--namespaced_org NAMESPACEDORG
	Optional

If True, the tokens %%%NAMESPACED_ORG%%% and ___NAMESPACED_ORG___ will get replaced with the namespace.  The default is false causing those tokens to get stripped and replaced with an empty string.  Set this if deploying to a namespaced scratch org or packaging org.



	--clean_meta_xml CLEANMETAXML
	Optional

Defaults to True which strips the <packageVersions/> element from all meta.xml files.  The packageVersion element gets added automatically by the target org and is set to whatever version is installed in the org.  To disable this, set this option to False










deploy_post

Description: Deploys all metadata bundles under unpackaged/post/

Class: cumulusci.tasks.salesforce.DeployBundles


Command Syntax

$ cci task run deploy_post




Options


	--path PATH
	Required

The path to the parent directory containing the metadata bundles directories

Default: unpackaged/post



	--unmanaged UNMANAGED
	Optional

If True, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix



	--namespace_strip NAMESPACESTRIP
	Optional

If set, all namespace prefixes for the namespace specified are stripped from files and filenames



	--check_only CHECKONLY
	Optional

If True, performs a test deployment (validation) of components without saving the components in the target org



	--test_level TESTLEVEL
	Optional

Specifies which tests are run as part of a deployment. Valid values: NoTestRun, RunLocalTests, RunAllTestsInOrg, RunSpecifiedTests.



	--specified_tests SPECIFIEDTESTS
	Optional

Comma-separated list of test classes to run upon deployment. Applies only with test_level set to RunSpecifiedTests.



	--static_resource_path STATICRESOURCEPATH
	Optional

The path where decompressed static resources are stored.  Any subdirectories found will be zipped and added to the staticresources directory of the build.



	--namespaced_org NAMESPACEDORG
	Optional

If True, the tokens %%%NAMESPACED_ORG%%% and ___NAMESPACED_ORG___ will get replaced with the namespace.  The default is false causing those tokens to get stripped and replaced with an empty string.  Set this if deploying to a namespaced scratch org or packaging org.



	--clean_meta_xml CLEANMETAXML
	Optional

Defaults to True which strips the <packageVersions/> element from all meta.xml files.  The packageVersion element gets added automatically by the target org and is set to whatever version is installed in the org.  To disable this, set this option to False










deploy_qa_config

Description: Deploys configuration for QA.

Class: cumulusci.tasks.salesforce.Deploy


Command Syntax

$ cci task run deploy_qa_config




Options


	--path PATH
	Required

The path to the metadata source to be deployed

Default: unpackaged/config/qa



	--unmanaged UNMANAGED
	Optional

If True, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix



	--namespace_strip NAMESPACESTRIP
	Optional

If set, all namespace prefixes for the namespace specified are stripped from files and filenames



	--check_only CHECKONLY
	Optional

If True, performs a test deployment (validation) of components without saving the components in the target org



	--test_level TESTLEVEL
	Optional

Specifies which tests are run as part of a deployment. Valid values: NoTestRun, RunLocalTests, RunAllTestsInOrg, RunSpecifiedTests.



	--specified_tests SPECIFIEDTESTS
	Optional

Comma-separated list of test classes to run upon deployment. Applies only with test_level set to RunSpecifiedTests.



	--static_resource_path STATICRESOURCEPATH
	Optional

The path where decompressed static resources are stored.  Any subdirectories found will be zipped and added to the staticresources directory of the build.



	--namespaced_org NAMESPACEDORG
	Optional

If True, the tokens %%%NAMESPACED_ORG%%% and ___NAMESPACED_ORG___ will get replaced with the namespace.  The default is false causing those tokens to get stripped and replaced with an empty string.  Set this if deploying to a namespaced scratch org or packaging org.



	--clean_meta_xml CLEANMETAXML
	Optional

Defaults to True which strips the <packageVersions/> element from all meta.xml files.  The packageVersion element gets added automatically by the target org and is set to whatever version is installed in the org.  To disable this, set this option to False










dx

Description: Execute an arbitrary Salesforce DX command against an org. Use the ‘command’ option to specify the command, such as ‘force:package:install’

Class: cumulusci.tasks.sfdx.SFDXOrgTask


Command Syntax

$ cci task run dx




Options


	--command COMMAND
	Required

The full command to run with the sfdx cli.



	--extra EXTRA
	Optional

Append additional options to the command










dx_convert_to

Description: Converts src directory metadata format into sfdx format under force-app

Class: cumulusci.tasks.sfdx.SFDXBaseTask


Command Syntax

$ cci task run dx_convert_to




Options


	--command COMMAND
	Required

The full command to run with the sfdx cli.

Default: force:mdapi:convert -r src



	--extra EXTRA
	Optional

Append additional options to the command










dx_convert_from

Description: Converts force-app directory in sfdx format into metadata format under src

Class: cumulusci.tasks.dx_convert_from.DxConvertFrom


Command Syntax

$ cci task run dx_convert_from




Options


	--src_dir SRCDIR
	Required

The path to the src directory where converted contents will be stored. Defaults to src/

Default: src



	--extra EXTRA
	Optional

Append additional options to the command










dx_pull

Description: Uses sfdx to pull from a scratch org into the force-app directory

Class: cumulusci.tasks.sfdx.SFDXOrgTask


Command Syntax

$ cci task run dx_pull




Options


	--command COMMAND
	Required

The full command to run with the sfdx cli.

Default: force:source:pull



	--extra EXTRA
	Optional

Append additional options to the command










dx_push

Description: Uses sfdx to push the force-app directory metadata into a scratch org

Class: cumulusci.tasks.sfdx.SFDXOrgTask


Command Syntax

$ cci task run dx_push




Options


	--command COMMAND
	Required

The full command to run with the sfdx cli.

Default: force:source:push



	--extra EXTRA
	Optional

Append additional options to the command










enable_einstein_prediction

Description: Enable an Einstein Prediction Builder prediction.

Class: cumulusci.tasks.salesforce.enable_prediction.EnablePrediction

This task updates the state of Einstein Prediction Builder predictions from ‘Draft’ to ‘Enabled’ by
posting to the Tooling API.

cci task run enable_prediction –org dev -o api_names Example_Prediction_v0


Command Syntax

$ cci task run enable_einstein_prediction




Options


	--api_names APINAMES
	Required

List of API names of the MLPredictionDefinitions.



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespaced_org NAMESPACEDORG
	Optional

If False, changes namespace_inject to replace namespaced-org tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix










ensure_record_types

Description: Ensure that a default Record Type is extant on the given standard sObject (custom objects are not supported). If Record Types are already present, do nothing.

Class: cumulusci.tasks.salesforce.EnsureRecordTypes


Command Syntax

$ cci task run ensure_record_types




Options


	--record_type_developer_name RECORDTYPEDEVELOPERNAME
	Required

The Developer Name of the Record Type (unique).  Must contain only alphanumeric characters and underscores.

Default: Default



	--record_type_label RECORDTYPELABEL
	Required

The Label of the Record Type.

Default: Default



	--sobject SOBJECT
	Required

The sObject on which to deploy the Record Type and optional Business Process.



	--record_type_description RECORDTYPEDESCRIPTION
	Optional

The Description of the Record Type.  Only uses the first 255 characters.



	--force_create FORCECREATE
	Optional

If true, the Record Type will be created even if a default Record Type already exists on this sObject. Defaults to False.










execute_anon

Description: Execute anonymous apex via the tooling api.

Class: cumulusci.tasks.apex.anon.AnonymousApexTask

Use the apex option to run a string of anonymous Apex.
Use the path option to run anonymous Apex from a file.
Or use both to concatenate the string to the file contents.


Command Syntax

$ cci task run execute_anon




Options


	--path PATH
	Optional

The path to an Apex file to run.



	--apex APEX
	Optional

A string of Apex to run (after the file, if specified).



	--managed MANAGED
	Optional

If True, will insert the project’s namespace prefix.  Defaults to False or no namespace.



	--namespaced NAMESPACED
	Optional

If True, the tokens %%%NAMESPACED_RT%%% and %%%namespaced%%% will get replaced with the namespace prefix for Record Types.



	--param1 PARAM1
	Optional

Parameter to pass to the Apex. Use as %%%PARAM_1%%% in the Apex code. Defaults to an empty value.



	--param2 PARAM2
	Optional

Parameter to pass to the Apex. Use as %%%PARAM_2%%% in the Apex code. Defaults to an empty value.










generate_data_dictionary

Description: Create a data dictionary for the project in CSV format.

Class: cumulusci.tasks.datadictionary.GenerateDataDictionary

Generate a data dictionary for the project by walking all GitHub releases.
The data dictionary is output as two CSV files.
One, in object_path, includes


	Object Label


	Object API Name


	Object Description


	Version Introduced




with one row per packaged object.

The other, in field_path, includes


	Object Label


	Object API Name


	Field Label


	Field API Name


	Field Type


	Valid Picklist Values


	Help Text


	Field Description


	Version Introduced


	Version Picklist Values Last Changed


	Version Help Text Last Changed




Both MDAPI and SFDX format releases are supported.


Command Syntax

$ cci task run generate_data_dictionary




Options


	--object_path OBJECTPATH
	Optional

Path to a CSV file to contain an sObject-level data dictionary.



	--field_path FIELDPATH
	Optional

Path to a CSV file to contain an field-level data dictionary.



	--include_dependencies INCLUDEDEPENDENCIES
	Optional

Process all of the GitHub dependencies of this project and include their schema in the data dictionary.



	--additional_dependencies ADDITIONALDEPENDENCIES
	Optional

Include schema from additional GitHub repositories that are not explicit dependencies of this project to build a unified data dictionary. Specify as a list of dicts as in project__dependencies in cumulusci.yml. Note: only repository dependencies are supported.



	--include_prerelease INCLUDEPRERELEASE
	Optional

Treat the current branch as containing prerelease schema, and included it as Prerelease in the data dictionary. NOTE: this option cannot be used with additional_dependencies or include_dependencies.



	--include_protected_schema INCLUDEPROTECTEDSCHEMA
	Optional

Include Custom Objects, Custom Settings, and Custom Metadata Types that are marked as Protected. Defaults to False.










generate_and_load_from_yaml

Description: None

Class: cumulusci.tasks.bulkdata.generate_and_load_data_from_yaml.GenerateAndLoadDataFromYaml


Command Syntax

$ cci task run generate_and_load_from_yaml




Options


	--data_generation_task DATAGENERATIONTASK
	Required

Fully qualified class path of a task to generate the data. Look at cumulusci.tasks.bulkdata.tests.dummy_data_factory to learn how to write them.



	--generator_yaml GENERATORYAML
	Required

A Snowfakery recipe file to use



	--num_records NUMRECORDS
	Optional

Target number of records. You will get at least this many records, but may get more. The recipe will always execute to completion, so if it creates 3 records per execution and you ask for 5, you will get 6.



	--num_records_tablename NUMRECORDSTABLENAME
	Optional

A string representing which table determines when the recipe execution is done.



	--batch_size BATCHSIZE
	Optional

How many records to create and load at a time.



	--data_generation_options DATAGENERATIONOPTIONS
	Optional

Options to pass to the data generator.



	--vars VARS
	Optional

Pass values to override options in the format VAR1:foo,VAR2:bar



	--replace_database REPLACEDATABASE
	Optional

Confirmation that it is okay to delete the data in database_url



	--working_directory WORKINGDIRECTORY
	Optional

Default path for temporary / working files



	--database_url DATABASEURL
	Optional

A path to put a copy of the sqlite database (for debugging)



	--mapping MAPPING
	Optional

A mapping YAML file to use



	--start_step STARTSTEP
	Optional

If specified, skip steps before this one in the mapping



	--sql_path SQLPATH
	Optional

If specified, a database will be created from an SQL script at the provided path



	--ignore_row_errors IGNOREROWERRORS
	Optional

If True, allow the load to continue even if individual rows fail to load.



	--reset_oids RESETOIDS
	Optional

If True (the default), and the _sf_ids tables exist, reset them before continuing.



	--bulk_mode BULKMODE
	Optional

Set to Serial to force serial mode on all jobs. Parallel is the default.



	--inject_namespaces INJECTNAMESPACES
	Optional

If True, the package namespace prefix will be automatically added to (or removed from) objects and fields based on the name used in the org. Defaults to True.



	--drop_missing_schema DROPMISSINGSCHEMA
	Optional

Set to True to skip any missing objects or fields instead of stopping with an error.



	--set_recently_viewed SETRECENTLYVIEWED
	Optional

By default, the first 1000 records inserted via the Bulk API will be set as recently viewed. If fewer than 1000 records are inserted, existing objects of the same type being inserted will also be set as recently viewed.



	--plugin_options PLUGINOPTIONS
	Optional

Pass values to override plugin options in the format VAR1:foo,VAR2:bar



	--generate_mapping_file GENERATEMAPPINGFILE
	Optional

A path to put a mapping file inferred from the generator_yaml



	--continuation_file CONTINUATIONFILE
	Optional

YAML file generated by Snowfakery representing next steps for data generation



	--generate_continuation_file GENERATECONTINUATIONFILE
	Optional

Path for Snowfakery to put its next continuation file



	--loading_rules LOADINGRULES
	Optional

Path to .load.yml file containing rules to use to load the file. Defaults to <recipename>.load.yml . Multiple files can be comma separated.










get_installed_packages

Description: Retrieves a list of the currently installed managed package namespaces and their versions

Class: cumulusci.tasks.preflight.packages.GetInstalledPackages


Command Syntax

$ cci task run get_installed_packages






get_available_licenses

Description: Retrieves a list of the currently available license definition keys

Class: cumulusci.tasks.preflight.licenses.GetAvailableLicenses


Command Syntax

$ cci task run get_available_licenses






get_available_permission_set_licenses

Description: Retrieves a list of the currently available Permission Set License definition keys

Class: cumulusci.tasks.preflight.licenses.GetAvailablePermissionSetLicenses


Command Syntax

$ cci task run get_available_permission_set_licenses






get_assigned_permission_sets

Description: Retrieves a list of the names of any permission sets assigned to the running user.

Class: cumulusci.tasks.preflight.permsets.GetPermissionSetAssignments


Command Syntax

$ cci task run get_assigned_permission_sets






get_available_permission_sets

Description: Retrieves a list of the currently available Permission Sets

Class: cumulusci.tasks.preflight.licenses.GetAvailablePermissionSets


Command Syntax

$ cci task run get_available_permission_sets






get_existing_record_types

Description: Retrieves all Record Types in the org as a dict, with sObject names as keys and lists of Developer Names as values.

Class: cumulusci.tasks.preflight.recordtypes.CheckSObjectRecordTypes


Command Syntax

$ cci task run get_existing_record_types






get_existing_sites

Description: Retrieves a list of any existing Experience Cloud site names in the org.

Class: cumulusci.tasks.salesforce.ListCommunities

Lists Communities for the current org via the Connect API.


Command Syntax

$ cci task run get_existing_sites






github_parent_pr_notes

Description: Merges the description of a child pull request to the respective parent’s pull request (if one exists).

Class: cumulusci.tasks.release_notes.task.ParentPullRequestNotes

Aggregate change notes from child pull request(s) to a corresponding parent pull request.

When given the branch_name option, this task will: (1) check if the base branch
of the corresponding pull request starts with the feature branch prefix and if so (2) attempt
to query for a pull request corresponding to this parent feature branch. (3) if a pull request
isn’t found, the task exits and no actions are taken.

If the build_notes_label is present on the pull request, then all notes from the
child pull request are aggregated into the parent pull request. if the build_notes_label
is not detected on the parent pull request then a link to the child pull request
is placed under the “Unaggregated Pull Requests” header.

If you have a pull request on branch feature/myFeature that you would like to rebuild notes
for use the branch_name and force options:


cci task run github_parent_pr_notes –branch-name feature/myFeature –force True





Command Syntax

$ cci task run github_parent_pr_notes




Options


	--branch_name BRANCHNAME
	Required

Name of branch to check for parent status, and if so, reaggregate change notes from child branches.



	--build_notes_label BUILDNOTESLABEL
	Required

Name of the label that indicates that change notes on parent pull requests should be reaggregated when a child branch pull request is created.



	--force FORCE
	Optional

force rebuilding of change notes from child branches in the given branch.










github_clone_tag

Description: Clones a github tag under a new name.

Class: cumulusci.tasks.github.CloneTag


Command Syntax

$ cci task run github_clone_tag




Options


	--src_tag SRCTAG
	Required

The source tag to clone.  Ex: beta/1.0-Beta_2



	--tag TAG
	Required

The new tag to create by cloning the src tag.  Ex: release/1.0










github_automerge_main

Description: Merges the latest commit on the main branch into all open feature branches

Class: cumulusci.tasks.github.MergeBranch

Merges the most recent commit on the current branch into other branches depending on the value of source_branch.

If source_branch is a branch that does not start with the specified branch_prefix, then the commit will be
merged to all branches that begin with branch_prefix and are not themselves child branches (i.e. branches don’t contain ‘__’ in their name).

If source_branch begins with branch_prefix, then the commit is merged to all child branches of source_branch.


Command Syntax

$ cci task run github_automerge_main




Options


	--commit COMMIT
	Optional

The commit to merge into feature branches.  Defaults to the current head commit.



	--source_branch SOURCEBRANCH
	Optional

The source branch to merge from.  Defaults to project__git__default_branch.



	--branch_prefix BRANCHPREFIX
	Optional

A list of prefixes of branches that should receive the merge.  Defaults to project__git__prefix_feature



	--skip_future_releases SKIPFUTURERELEASES
	Optional

If true, then exclude branches that start with the branch prefix if they are not for the lowest release number. Defaults to True.



	--update_future_releases UPDATEFUTURERELEASES
	Optional

If true, then include release branches that are not the lowest release number even if they are not child branches. Defaults to False.










github_automerge_feature

Description: Merges the latest commit on a source branch to all child branches.

Class: cumulusci.tasks.github.MergeBranch

Merges the most recent commit on the current branch into other branches depending on the value of source_branch.

If source_branch is a branch that does not start with the specified branch_prefix, then the commit will be
merged to all branches that begin with branch_prefix and are not themselves child branches (i.e. branches don’t contain ‘__’ in their name).

If source_branch begins with branch_prefix, then the commit is merged to all child branches of source_branch.


Command Syntax

$ cci task run github_automerge_feature




Options


	--commit COMMIT
	Optional

The commit to merge into feature branches.  Defaults to the current head commit.



	--source_branch SOURCEBRANCH
	Optional

The source branch to merge from.  Defaults to project__git__default_branch.

Default: $project_config.repo_branch



	--branch_prefix BRANCHPREFIX
	Optional

A list of prefixes of branches that should receive the merge.  Defaults to project__git__prefix_feature



	--skip_future_releases SKIPFUTURERELEASES
	Optional

If true, then exclude branches that start with the branch prefix if they are not for the lowest release number. Defaults to True.



	--update_future_releases UPDATEFUTURERELEASES
	Optional

If true, then include release branches that are not the lowest release number even if they are not child branches. Defaults to False.










github_copy_subtree

Description: Copies one or more subtrees from the project repository for a given release to a target repository, with the option to include release notes.

Class: cumulusci.tasks.github.publish.PublishSubtree


Command Syntax

$ cci task run github_copy_subtree




Options


	--repo_url REPOURL
	Required

The url to the public repo



	--branch BRANCH
	Required

The branch to update in the target repo



	--version VERSION
	Optional

(Deprecated >= 3.42.0) Only the values of ‘latest’ and ‘latest_beta’ are acceptable. Required if ‘ref’ or ‘tag_name’ is not set. This will override tag_name if it is provided.



	--tag_name TAGNAME
	Optional

The name of the tag that should be associated with this release. Values of ‘latest’ and ‘latest_beta’ are also allowed. Required if ‘ref’ or ‘version’ is not set.



	--ref REF
	Optional

The git reference to publish.  Takes precedence over ‘version’ and ‘tag_name’. Required if ‘tag_name’ is not set.



	--include INCLUDE
	Optional

A list of paths from repo root to include. Directories must end with a trailing slash.



	--renames RENAMES
	Optional

A list of paths to rename in the target repo, given as local: target: pairs.



	--create_release CREATERELEASE
	Optional

If True, create a release in the public repo.  Defaults to False



	--release_body RELEASEBODY
	Optional

If True, the entire release body will be published to the public repo.  Defaults to False



	--dry_run DRYRUN
	Optional

If True, skip creating Github data.  Defaults to False










github_package_data

Description: Look up 2gp package dependencies for a version id recorded in a commit status.

Class: cumulusci.tasks.github.commit_status.GetPackageDataFromCommitStatus


Command Syntax

$ cci task run github_package_data




Options


	--context CONTEXT
	Required

Name of the commit status context



	--version_id VERSIONID
	Optional

Package version id










github_pull_requests

Description: Lists open pull requests in project Github repository

Class: cumulusci.tasks.github.PullRequests


Command Syntax

$ cci task run github_pull_requests






github_release

Description: Creates a Github release for a given managed package version number

Class: cumulusci.tasks.github.CreateRelease


Command Syntax

$ cci task run github_release




Options


	--version VERSION
	Required

The managed package version number.  Ex: 1.2



	--package_type PACKAGETYPE
	Required

The package type of the project (either 1GP or 2GP)



	--tag_prefix TAGPREFIX
	Required

The prefix to use for the release tag created in github.



	--version_id VERSIONID
	Optional

The SubscriberPackageVersionId (04t) associated with this release.



	--message MESSAGE
	Optional

The message to attach to the created git tag



	--dependencies DEPENDENCIES
	Optional

List of dependencies to record in the tag message.



	--commit COMMIT
	Optional

Override the commit used to create the release. Defaults to the current local HEAD commit



	--resolution_strategy RESOLUTIONSTRATEGY
	Optional

The name of a sequence of resolution_strategy (from project__dependency_resolutions) to apply to dynamic dependencies. Defaults to ‘production’.










gather_release_notes

Description: Generates release notes by getting the latest release of each repository

Class: cumulusci.tasks.release_notes.task.AllGithubReleaseNotes


Command Syntax

$ cci task run gather_release_notes




Options


	--repos REPOS
	Required

The list of owner, repo key pairs for which to generate release notes. Ex: ‘owner’: SalesforceFoundation ‘repo’: ‘NPSP’










github_release_notes

Description: Generates release notes by parsing pull request bodies of merged pull requests between two tags

Class: cumulusci.tasks.release_notes.task.GithubReleaseNotes


Command Syntax

$ cci task run github_release_notes




Options


	--tag TAG
	Required

The tag to generate release notes for. Ex: release/1.2



	--last_tag LASTTAG
	Optional

Override the last release tag. This is useful to generate release notes if you skipped one or more releases.



	--link_pr LINKPR
	Optional

If True, insert link to source pull request at end of each line.



	--publish PUBLISH
	Optional

Publish to GitHub release if True (default=False)



	--include_empty INCLUDEEMPTY
	Optional

If True, include links to PRs that have no release notes (default=False)



	--version_id VERSIONID
	Optional

The package version id used by the InstallLinksParser to add install urls



	--trial_info TRIALINFO
	Optional

If True, Includes trialforce template text for this product.



	--sandbox_date SANDBOXDATE
	Optional

The date of the sandbox release in ISO format (Will default to None)



	--production_date PRODUCTIONDATE
	Optional

The date of the production release in ISO format (Will default to None)










github_release_report

Description: Parses GitHub release notes to report various info

Class: cumulusci.tasks.github.ReleaseReport


Command Syntax

$ cci task run github_release_report




Options


	--date_start DATESTART
	Optional

Filter out releases created before this date (YYYY-MM-DD)



	--date_end DATEEND
	Optional

Filter out releases created after this date (YYYY-MM-DD)



	--include_beta INCLUDEBETA
	Optional

Include beta releases in report [default=False]



	--print PRINT
	Optional

Print info to screen as JSON [default=False]










install_managed

Description: Install the latest managed production release

Class: cumulusci.tasks.salesforce.InstallPackageVersion


Command Syntax

$ cci task run install_managed




Options


	--namespace NAMESPACE
	Required

The namespace of the package to install.  Defaults to project__package__namespace



	--version VERSION
	Required

The version of the package to install.  “latest” and “latest_beta” can be used to trigger lookup via Github Releases on the repository.

Default: latest



	--name NAME
	Optional

The name of the package to install.  Defaults to project__package__name_managed



	--version_number VERSIONNUMBER
	Optional

If installing a package using an 04t version Id, display this version number to the user and in logs. Has no effect otherwise.



	--activateRSS ACTIVATERSS
	Optional

Deprecated. Use activate_remote_site_settings instead.



	--retries RETRIES
	Optional

Number of retries (default=5)



	--retry_interval RETRYINTERVAL
	Optional

Number of seconds to wait before the next retry (default=5),



	--retry_interval_add RETRYINTERVALADD
	Optional

Number of seconds to add before each retry (default=30),



	--interactive INTERACTIVE
	Optional

If True, stop after resolving the package version and output the package Id that will be installed. Defaults to False.



	--base_package_url_format BASEPACKAGEURLFORMAT
	Optional

If interactive is set to True, display package Ids using a format string ({} will be replaced with the package Id).



	--security_type SECURITYTYPE
	Optional

Which Profiles to install packages for (FULL = all profiles, NONE = admins only, PUSH = no profiles, CUSTOM = custom profiles). Defaults to FULL.



	--name_conflict_resolution NAMECONFLICTRESOLUTION
	Optional

Specify how to resolve name conflicts when installing an Unlocked Package. Available values are Block and RenameMetadata. Defaults to Block.



	--activate_remote_site_settings ACTIVATEREMOTESITESETTINGS
	Optional

Activate Remote Site Settings when installing a package. Defaults to True.



	--password PASSWORD
	Optional

The installation key for the managed package.



	--apex_compile_type APEXCOMPILETYPE
	Optional

For Unlocked Packages only, whether to compile Apex in the package only (package) or in the whole org (all). all is the default behavior.



	--upgrade_type UPGRADETYPE
	Optional

For Unlocked Package upgrades only, whether to deprecate removed components (deprecate-only), delete them (delete-only), or delete and deprecate based on safety (mixed). mixed is the default behavior.










install_managed_beta

Description: Installs the latest managed beta release

Class: cumulusci.tasks.salesforce.InstallPackageVersion


Command Syntax

$ cci task run install_managed_beta




Options


	--namespace NAMESPACE
	Required

The namespace of the package to install.  Defaults to project__package__namespace



	--version VERSION
	Required

The version of the package to install.  “latest” and “latest_beta” can be used to trigger lookup via Github Releases on the repository.

Default: latest_beta



	--name NAME
	Optional

The name of the package to install.  Defaults to project__package__name_managed



	--version_number VERSIONNUMBER
	Optional

If installing a package using an 04t version Id, display this version number to the user and in logs. Has no effect otherwise.



	--activateRSS ACTIVATERSS
	Optional

Deprecated. Use activate_remote_site_settings instead.



	--retries RETRIES
	Optional

Number of retries (default=5)



	--retry_interval RETRYINTERVAL
	Optional

Number of seconds to wait before the next retry (default=5),



	--retry_interval_add RETRYINTERVALADD
	Optional

Number of seconds to add before each retry (default=30),



	--interactive INTERACTIVE
	Optional

If True, stop after resolving the package version and output the package Id that will be installed. Defaults to False.



	--base_package_url_format BASEPACKAGEURLFORMAT
	Optional

If interactive is set to True, display package Ids using a format string ({} will be replaced with the package Id).



	--security_type SECURITYTYPE
	Optional

Which Profiles to install packages for (FULL = all profiles, NONE = admins only, PUSH = no profiles, CUSTOM = custom profiles). Defaults to FULL.



	--name_conflict_resolution NAMECONFLICTRESOLUTION
	Optional

Specify how to resolve name conflicts when installing an Unlocked Package. Available values are Block and RenameMetadata. Defaults to Block.



	--activate_remote_site_settings ACTIVATEREMOTESITESETTINGS
	Optional

Activate Remote Site Settings when installing a package. Defaults to True.



	--password PASSWORD
	Optional

The installation key for the managed package.



	--apex_compile_type APEXCOMPILETYPE
	Optional

For Unlocked Packages only, whether to compile Apex in the package only (package) or in the whole org (all). all is the default behavior.



	--upgrade_type UPGRADETYPE
	Optional

For Unlocked Package upgrades only, whether to deprecate removed components (deprecate-only), delete them (delete-only), or delete and deprecate based on safety (mixed). mixed is the default behavior.










list_communities

Description: Lists Communities for the current org using the Connect API.

Class: cumulusci.tasks.salesforce.ListCommunities

Lists Communities for the current org via the Connect API.


Command Syntax

$ cci task run list_communities






list_community_templates

Description: Prints the Community Templates available to the current org

Class: cumulusci.tasks.salesforce.ListCommunityTemplates

Lists Salesforce Community templates available for the current org via the Connect API.


Command Syntax

$ cci task run list_community_templates






list_metadata_types

Description: Prints the metadata types in a project

Class: cumulusci.tasks.util.ListMetadataTypes


Command Syntax

$ cci task run list_metadata_types




Options


	--package_xml PACKAGEXML
	Optional

The project package.xml file. Defaults to <project_root>/src/package.xml










meta_xml_apiversion

Description: Set the API version in *meta.xml files

Class: cumulusci.tasks.metaxml.UpdateApi


Command Syntax

$ cci task run meta_xml_apiversion




Options


	--version VERSION
	Required

API version number e.g. 37.0



	--dir DIR
	Optional

Base directory to search for *-meta.xml files










meta_xml_dependencies

Description: Set the version for dependent packages

Class: cumulusci.tasks.metaxml.UpdateDependencies


Command Syntax

$ cci task run meta_xml_dependencies




Options


	--dir DIR
	Optional

Base directory to search for *-meta.xml files










metadeploy_publish

Description: Publish a release to the MetaDeploy web installer

Class: cumulusci.tasks.metadeploy.Publish


Command Syntax

$ cci task run metadeploy_publish




Options


	--tag TAG
	Optional

Name of the git tag to publish



	--commit COMMIT
	Optional

Commit hash to publish



	--plan PLAN
	Optional

Name of the plan(s) to publish. This refers to the plans section of cumulusci.yml. By default, all plans will be published.



	--dry_run DRYRUN
	Optional

If True, print steps without publishing.



	--publish PUBLISH
	Optional

If True, set is_listed to True on the version. Default: False



	--labels_path LABELSPATH
	Optional

Path to a folder containing translations.










org_settings

Description: Apply org settings from a scratch org definition file or dict

Class: cumulusci.tasks.salesforce.org_settings.DeployOrgSettings


Command Syntax

$ cci task run org_settings




Options


	--definition_file DEFINITIONFILE
	Optional

sfdx scratch org definition file



	--settings SETTINGS
	Optional

A dict of settings to apply



	--object_settings OBJECTSETTINGS
	Optional

A dict of objectSettings to apply



	--api_version APIVERSION
	Optional

API version used to deploy the settings










promote_package_version

Description: Promote a 2gp package so that it can be installed in a production org

Class: cumulusci.tasks.salesforce.promote_package_version.PromotePackageVersion


	Promote a Second Generation package (managed or unlocked).
	Lists any 1GP dependencies that are detected, as well as
any dependency packages that have not been promoted.
Once promoted, the 2GP package can be installed into production orgs.






Command Syntax

$ cci task run promote_package_version




Options


	--version_id VERSIONID
	Optional

The SubscriberPackageVersion (04t) Id for the target package.



	--promote_dependencies PROMOTEDEPENDENCIES
	Optional

Automatically promote any unpromoted versions of dependency 2GP packages that are detected.










publish_community

Description: Publishes a Community in the target org using the Connect API

Class: cumulusci.tasks.salesforce.PublishCommunity

Publish a Salesforce Community via the Connect API. Warning: This does not work with the Community Template ‘VF Template’ due to an existing bug in the API.


Command Syntax

$ cci task run publish_community




Options


	--name NAME
	Optional

The name of the Community to publish.



	--community_id COMMUNITYID
	Optional

The id of the Community to publish.










push_all

Description: Schedules a push upgrade of a package version to all subscribers

Class: cumulusci.tasks.push.tasks.SchedulePushOrgQuery


Command Syntax

$ cci task run push_all




Options


	--version VERSION
	Required

The managed package version to push



	--subscriber_where SUBSCRIBERWHERE
	Optional

A SOQL style WHERE clause for filtering PackageSubscriber objects. Ex: OrgType = ‘Sandbox’



	--min_version MINVERSION
	Optional

If set, no subscriber with a version lower than min_version will be selected for push



	--metadata_package_id METADATAPACKAGEID
	Optional

The MetadataPackageId (ID prefix 033) to push.



	--namespace NAMESPACE
	Optional

The managed package namespace to push. Defaults to project__package__namespace.



	--start_time STARTTIME
	Optional

Set the start time (ISO-8601) to queue a future push. (Ex: 2021-01-01T06:00Z or 2021-01-01T06:00-08:00) Times with no timezone will be interpreted as UTC.



	--dry_run DRYRUN
	Optional

If True, log how many orgs were selected but skip creating a PackagePushRequest.  Defaults to False










push_list

Description: Schedules a push upgrade of a package version to all orgs listed in the specified file

Class: cumulusci.tasks.push.tasks.SchedulePushOrgList


Command Syntax

$ cci task run push_list




Options


	--csv CSV
	Optional

The path to a CSV file to read.



	--csv_field_name CSVFIELDNAME
	Optional

The CSV field name that contains organization IDs. Defaults to ‘OrganizationID’



	--orgs ORGS
	Optional

The path to a file containing one OrgID per line.



	--version VERSION
	Optional

The managed package version to push



	--version_id VERSIONID
	Optional

The MetadataPackageVersionId (ID prefix 04t) to push



	--metadata_package_id METADATAPACKAGEID
	Optional

The MetadataPackageId (ID prefix 033) to push.



	--namespace NAMESPACE
	Optional

The managed package namespace to push. Defaults to project__package__namespace.



	--start_time STARTTIME
	Optional

Set the start time (ISO-8601) to queue a future push. (Ex: 2021-01-01T06:00Z or 2021-01-01T06:00-08:00) Times with no timezone will be interpreted as UTC.



	--batch_size BATCHSIZE
	Optional

Break pull requests into batches of this many orgs. Defaults to 200.










push_qa

Description: Schedules a push upgrade of a package version to all orgs listed in push/orgs_qa.txt

Class: cumulusci.tasks.push.tasks.SchedulePushOrgList


Command Syntax

$ cci task run push_qa




Options


	--csv CSV
	Optional

The path to a CSV file to read.



	--csv_field_name CSVFIELDNAME
	Optional

The CSV field name that contains organization IDs. Defaults to ‘OrganizationID’



	--orgs ORGS
	Optional

The path to a file containing one OrgID per line.

Default: push/orgs_qa.txt



	--version VERSION
	Optional

The managed package version to push



	--version_id VERSIONID
	Optional

The MetadataPackageVersionId (ID prefix 04t) to push



	--metadata_package_id METADATAPACKAGEID
	Optional

The MetadataPackageId (ID prefix 033) to push.



	--namespace NAMESPACE
	Optional

The managed package namespace to push. Defaults to project__package__namespace.



	--start_time STARTTIME
	Optional

Set the start time (ISO-8601) to queue a future push. (Ex: 2021-01-01T06:00Z or 2021-01-01T06:00-08:00) Times with no timezone will be interpreted as UTC.



	--batch_size BATCHSIZE
	Optional

Break pull requests into batches of this many orgs. Defaults to 200.










push_sandbox

Description: Schedules a push upgrade of a package version to sandbox orgs

Class: cumulusci.tasks.push.tasks.SchedulePushOrgQuery


Command Syntax

$ cci task run push_sandbox




Options


	--version VERSION
	Required

The managed package version to push



	--subscriber_where SUBSCRIBERWHERE
	Optional

A SOQL style WHERE clause for filtering PackageSubscriber objects. Ex: OrgType = ‘Sandbox’

Default: OrgType = ‘Sandbox’



	--min_version MINVERSION
	Optional

If set, no subscriber with a version lower than min_version will be selected for push



	--metadata_package_id METADATAPACKAGEID
	Optional

The MetadataPackageId (ID prefix 033) to push.



	--namespace NAMESPACE
	Optional

The managed package namespace to push. Defaults to project__package__namespace.



	--start_time STARTTIME
	Optional

Set the start time (ISO-8601) to queue a future push. (Ex: 2021-01-01T06:00Z or 2021-01-01T06:00-08:00) Times with no timezone will be interpreted as UTC.



	--dry_run DRYRUN
	Optional

If True, log how many orgs were selected but skip creating a PackagePushRequest.  Defaults to False










push_trial

Description: Schedules a push upgrade of a package version to Trialforce Template orgs listed in push/orgs_trial.txt

Class: cumulusci.tasks.push.tasks.SchedulePushOrgList


Command Syntax

$ cci task run push_trial




Options


	--csv CSV
	Optional

The path to a CSV file to read.



	--csv_field_name CSVFIELDNAME
	Optional

The CSV field name that contains organization IDs. Defaults to ‘OrganizationID’



	--orgs ORGS
	Optional

The path to a file containing one OrgID per line.

Default: push/orgs_trial.txt



	--version VERSION
	Optional

The managed package version to push



	--version_id VERSIONID
	Optional

The MetadataPackageVersionId (ID prefix 04t) to push



	--metadata_package_id METADATAPACKAGEID
	Optional

The MetadataPackageId (ID prefix 033) to push.



	--namespace NAMESPACE
	Optional

The managed package namespace to push. Defaults to project__package__namespace.



	--start_time STARTTIME
	Optional

Set the start time (ISO-8601) to queue a future push. (Ex: 2021-01-01T06:00Z or 2021-01-01T06:00-08:00) Times with no timezone will be interpreted as UTC.



	--batch_size BATCHSIZE
	Optional

Break pull requests into batches of this many orgs. Defaults to 200.










push_failure_report

Description: Produce a CSV report of the failed and otherwise anomalous push jobs.

Class: cumulusci.tasks.push.pushfails.ReportPushFailures


Command Syntax

$ cci task run push_failure_report




Options


	--request_id REQUESTID
	Required

PackagePushRequest ID for the request you need to report on.



	--result_file RESULTFILE
	Optional

Path to write a CSV file with the results. Defaults to ‘push_fails.csv’.



	--ignore_errors IGNOREERRORS
	Optional

List of ErrorTitle and ErrorType values to omit from the report

Default: [‘Salesforce Subscription Expired’, ‘Package Uninstalled’]










query

Description: Queries the connected org

Class: cumulusci.tasks.salesforce.SOQLQuery


Command Syntax

$ cci task run query




Options


	--object OBJECT
	Required

The object to query



	--query QUERY
	Required

A valid bulk SOQL query for the object



	--result_file RESULTFILE
	Required

The name of the csv file to write the results to










retrieve_packaged

Description: Retrieves the packaged metadata from the org

Class: cumulusci.tasks.salesforce.RetrievePackaged


Command Syntax

$ cci task run retrieve_packaged




Options


	--path PATH
	Required

The path to write the retrieved metadata

Default: packaged



	--package PACKAGE
	Required

The package name to retrieve.  Defaults to project__package__name



	--namespace_strip NAMESPACESTRIP
	Optional

If set, all namespace prefixes for the namespace specified are stripped from files and filenames



	--namespace_tokenize NAMESPACETOKENIZE
	Optional

If set, all namespace prefixes for the namespace specified are replaced with tokens for use with namespace_inject



	--namespaced_org NAMESPACEDORG
	Optional

If True, the tokens %%%NAMESPACED_ORG%%% and ___NAMESPACED_ORG___ will get replaced with the namespace.  The default is false causing those tokens to get stripped and replaced with an empty string.  Set this if deploying to a namespaced scratch org or packaging org.



	--api_version APIVERSION
	Optional

Override the default api version for the retrieve. Defaults to project__package__api_version










retrieve_src

Description: Retrieves the packaged metadata into the src directory

Class: cumulusci.tasks.salesforce.RetrievePackaged


Command Syntax

$ cci task run retrieve_src




Options


	--path PATH
	Required

The path to write the retrieved metadata

Default: src



	--package PACKAGE
	Required

The package name to retrieve.  Defaults to project__package__name



	--namespace_strip NAMESPACESTRIP
	Optional

If set, all namespace prefixes for the namespace specified are stripped from files and filenames



	--namespace_tokenize NAMESPACETOKENIZE
	Optional

If set, all namespace prefixes for the namespace specified are replaced with tokens for use with namespace_inject



	--namespaced_org NAMESPACEDORG
	Optional

If True, the tokens %%%NAMESPACED_ORG%%% and ___NAMESPACED_ORG___ will get replaced with the namespace.  The default is false causing those tokens to get stripped and replaced with an empty string.  Set this if deploying to a namespaced scratch org or packaging org.



	--api_version APIVERSION
	Optional

Override the default api version for the retrieve. Defaults to project__package__api_version










retrieve_unpackaged

Description: Retrieve the contents of a package.xml file.

Class: cumulusci.tasks.salesforce.RetrieveUnpackaged


Command Syntax

$ cci task run retrieve_unpackaged




Options


	--path PATH
	Required

The path to write the retrieved metadata



	--package_xml PACKAGEXML
	Required

The path to a package.xml manifest to use for the retrieve.



	--namespace_strip NAMESPACESTRIP
	Optional

If set, all namespace prefixes for the namespace specified are stripped from files and filenames



	--namespace_tokenize NAMESPACETOKENIZE
	Optional

If set, all namespace prefixes for the namespace specified are replaced with tokens for use with namespace_inject



	--namespaced_org NAMESPACEDORG
	Optional

If True, the tokens %%%NAMESPACED_ORG%%% and ___NAMESPACED_ORG___ will get replaced with the namespace.  The default is false causing those tokens to get stripped and replaced with an empty string.  Set this if deploying to a namespaced scratch org or packaging org.



	--api_version APIVERSION
	Optional

Override the default api version for the retrieve. Defaults to project__package__api_version










list_changes

Description: List the changes from a scratch org

Class: cumulusci.tasks.salesforce.sourcetracking.ListChanges


Command Syntax

$ cci task run list_changes




Options


	--include INCLUDE
	Optional

A comma-separated list of strings. Components will be included if one of these strings is part of either the metadata type or name. Example: -o include CustomField,Admin matches both CustomField: Favorite_Color__c and Profile: Admin



	--types TYPES
	Optional

A comma-separated list of metadata types to include.



	--exclude EXCLUDE
	Optional

Exclude changed components matching this string.



	--snapshot SNAPSHOT
	Optional

If True, all matching items will be set to be ignored at their current revision number.  This will exclude them from the results unless a new edit is made.










retrieve_changes

Description: Retrieve changed components from a scratch org

Class: cumulusci.tasks.salesforce.sourcetracking.RetrieveChanges


Command Syntax

$ cci task run retrieve_changes




Options


	--include INCLUDE
	Optional

A comma-separated list of strings. Components will be included if one of these strings is part of either the metadata type or name. Example: -o include CustomField,Admin matches both CustomField: Favorite_Color__c and Profile: Admin



	--types TYPES
	Optional

A comma-separated list of metadata types to include.



	--exclude EXCLUDE
	Optional

Exclude changed components matching this string.



	--snapshot SNAPSHOT
	Optional

If True, all matching items will be set to be ignored at their current revision number.  This will exclude them from the results unless a new edit is made.



	--path PATH
	Optional

The path to write the retrieved metadata



	--api_version APIVERSION
	Optional

Override the default api version for the retrieve. Defaults to project__package__api_version



	--namespace_tokenize NAMESPACETOKENIZE
	Optional

If set, all namespace prefixes for the namespace specified are replaced with tokens for use with namespace_inject










retrieve_qa_config

Description: Retrieves the current changes in the scratch org into unpackaged/config/qa

Class: cumulusci.tasks.salesforce.sourcetracking.RetrieveChanges


Command Syntax

$ cci task run retrieve_qa_config




Options


	--include INCLUDE
	Optional

A comma-separated list of strings. Components will be included if one of these strings is part of either the metadata type or name. Example: -o include CustomField,Admin matches both CustomField: Favorite_Color__c and Profile: Admin



	--types TYPES
	Optional

A comma-separated list of metadata types to include.



	--exclude EXCLUDE
	Optional

Exclude changed components matching this string.



	--snapshot SNAPSHOT
	Optional

If True, all matching items will be set to be ignored at their current revision number.  This will exclude them from the results unless a new edit is made.



	--path PATH
	Optional

The path to write the retrieved metadata

Default: unpackaged/config/qa



	--api_version APIVERSION
	Optional

Override the default api version for the retrieve. Defaults to project__package__api_version



	--namespace_tokenize NAMESPACETOKENIZE
	Optional

If set, all namespace prefixes for the namespace specified are replaced with tokens for use with namespace_inject

Default: $project_config.project__package__namespace










set_field_help_text

Description: Sets specified fields’ Help Text values.

Class: cumulusci.tasks.metadata_etl.help_text.SetFieldHelpText


Command Syntax

$ cci task run set_field_help_text




Options


	--fields FIELDS
	Required

List of object fields to affect, in Object__c.Field__c form.



	--overwrite OVERWRITE
	Optional

If set to True, overwrite any differing Help Text found on the field. By default, Help Text is set only if it is blank.



	--api_names APINAMES
	Optional

List of API names of entities to affect



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix

Default: $project_config.project__package__namespace



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










snapshot_changes

Description: Tell SFDX source tracking to ignore previous changes in a scratch org

Class: cumulusci.tasks.salesforce.sourcetracking.SnapshotChanges


Command Syntax

$ cci task run snapshot_changes






snowfakery

Description: Generate and load data from a Snowfakery recipe

Class: cumulusci.tasks.bulkdata.snowfakery.Snowfakery

Do a data load with Snowfakery.

All options are optional.

The most commonly supplied options are recipe and one of the three
run_until_… options.


Command Syntax

$ cci task run snowfakery




Options


	--recipe RECIPE
	Required

Path to a Snowfakery recipe file determining what data to generate and load.

Default: datasets/recipe.yml



	--run_until_records_in_org RUNUNTILRECORDSINORG
	
Optional

<sobject>:<count>




Run the recipe repeatedly until the count of <sobject>
in the org matches the given <count>.

For example, –run_until_records_in_org Account:50_000 means:

Count the Account records in the org. Let’s say the number
is 20,000. Thus, we must run the recipe over and
over again until we generate 30,000 new Account records.
If the recipe also generates e.g.Contacts, Opportunities or whatever
else, it generates the appropriate number of them to match.

Underscores are allowed but optional in big numbers: 2000000
is the same as 2_000_000.



	--run_until_records_loaded RUNUNTILRECORDSLOADED
	
Optional

<sobject>:<count>




Run the recipe repeatedly until the number of records of
<sobject> uploaded in this task execution matches <count>.

For example, –run_until_records_loaded Account:50_000 means:

Run the recipe over and over again
until we generate 50_000 new Account records. If the recipe
also generates e.g. Contacts, Opportunities or whatever else, it
generates the appropriate number of them to match.



	--run_until_recipe_repeated RUNUNTILRECIPEREPEATED
	Optional


	Run the recipe <count> times,
	no matter what data is already in the org.

For example, –run_until_recipe_repeated 50_000 means
run the recipe 50_000 times.







	--working_directory WORKINGDIRECTORY
	Optional

Path for temporary / working files



	--loading_rules LOADINGRULES
	Optional

Path to .load.yml file containing rules to use to load the file. Defaults to <recipename>.load.yml. Multiple files can be comma separated.



	--recipe_options RECIPEOPTIONS
	Optional

Pass values to override options in the format VAR1:foo,VAR2:bar


Example: –recipe_options weight:10,color:purple






	--bulk_mode BULKMODE
	Optional

Set to Serial to serialize everything: data generation, data loading, data ingestion through bulk API. Parallel is the default.



	--drop_missing_schema DROPMISSINGSCHEMA
	Optional

Set to True to skip any missing objects or fields instead of stopping with an error.



	--num_processes NUMPROCESSES
	Optional

Number of data generating processes. Defaults to matching the number of CPUs.



	--ignore_row_errors IGNOREROWERRORS
	Optional

Boolean: should we continue loading even after running into row errors? Defaults to False.










revert_managed_src

Description: Reverts the changes from create_managed_src

Class: cumulusci.tasks.metadata.managed_src.RevertManagedSrc


Command Syntax

$ cci task run revert_managed_src




Options


	--path PATH
	Required

The path containing metadata to process for managed deployment

Default: src



	--revert_path REVERTPATH
	Required

The path to copy the original metadata to for the revert call

Default: src.orig










revert_unmanaged_ee_src

Description: Reverts the changes from create_unmanaged_ee_src

Class: cumulusci.tasks.metadata.ee_src.RevertUnmanagedEESrc


Command Syntax

$ cci task run revert_unmanaged_ee_src




Options


	--path PATH
	Required

The path containing metadata to process for managed deployment

Default: src



	--revert_path REVERTPATH
	Required

The path to copy the original metadata to for the revert call

Default: src.orig










robot

Description: Runs a Robot Framework test from a .robot file

Class: cumulusci.tasks.robotframework.Robot

Runs Robot test cases using a browser, if
necessary and stores its results in a directory. The
path to the directory can be retrieved from the
robot_outputdir return variable.
Command Syntax
——————————————

$ cci task run robot


Options


	--suites SUITES
	Required

Paths to test case files/directories to be executed similarly as when running the robot command on the command line.  Defaults to “tests” to run all tests in the tests directory

Default: tests



	--test TEST
	Optional

Run only tests matching name patterns.  Can be comma separated and use robot wildcards like *



	--include INCLUDE
	Optional

Includes tests with a given tag pattern



	--exclude EXCLUDE
	Optional

Excludes tests with a given tag pattern. Excluded tests will not appear in the logs and reports.



	--skip SKIP
	Optional

Do not run tests with the given tag pattern. Similar to ‘exclude’, but skipped tests will appear in the logs and reports  with the status of SKIP.



	--vars VARS
	Optional

Pass values to override variables in the format VAR1:foo,VAR2:bar



	--xunit XUNIT
	Optional

Set an XUnit format output file for test results



	--sources SOURCES
	Optional

List of sources defined in cumulusci.yml that are required by the robot task.



	--options OPTIONS
	Optional

A dictionary of options to robot.run method. In simple cases this can be specified on the comand line using name:value,name:value syntax. More complex cases can be specified in cumulusci.yml using YAML dictionary syntax.



	--name NAME
	Optional

Sets the name of the top level test suite



	--pdb PDB
	Optional

If true, run the Python debugger when tests fail.



	--verbose VERBOSE
	Optional

If true, log each keyword as it runs.



	--robot_debug ROBOTDEBUG
	Optional

If true, enable the breakpoint keyword to enable the robot debugger



	--ordering ORDERING
	Optional

Path to a file which defines the order in which parallel tests are run. This maps directly to the pabot option of the same name. It is ignored unless the processes argument is set to 2 or greater.



	--processes PROCESSES
	Optional

experimental Number of processes to use for running tests in parallel. If this value is set to a number larger than 1 the tests will run using the open source tool pabot rather than robotframework. For example, -o parallel 2 will run half of the tests in one process and half in another. If not provided, all tests will run in a single process using the standard robot test runner. See https://pabot.org/ for more information on pabot.



	--testlevelsplit TESTLEVELSPLIT
	Optional

If true, split parallel execution at the test level rather than the suite level. This option is ignored unless the processes option is set to 2 or greater. Note: this option requires a boolean value even though the pabot option of the same name does not.










robot_libdoc

Description: Generates documentation for project keyword files

Class: cumulusci.tasks.robotframework.RobotLibDoc


Command Syntax

$ cci task run robot_libdoc




Options


	--path PATH
	Required

The path to one or more keyword libraries to be documented. The path can be single a python file, a .robot file, a python module (eg: cumulusci.robotframework.Salesforce) or a comma separated list of any of those. Glob patterns are supported for filenames (eg: robot/SAL/doc/*PageObject.py). The order of the files will be preserved in the generated documentation. The result of pattern expansion will be sorted



	--output OUTPUT
	Required

The output file where the documentation will be written. Normally an HTML file will be generated. If the filename ends with ‘.csv’ then a csv file will be generated instead.

Default: Keywords.html



	--title TITLE
	Optional

A string to use as the title of the generated output

Default: $project_config.project__package__name



	--preview PREVIEW
	Optional

If True, automatically open a window to view the generated data when the task is successful










robot_lint

Description: Static analysis tool for robot framework files

Class: cumulusci.tasks.robotframework.RobotLint

The robot_lint task performs static analysis on one or more .robot
and .resource files. Each line is parsed, and the result passed through
a series of rules. Rules can issue warnings or errors about each line.

If any errors are reported, the task will exit with a non-zero status.

When a rule has been violated, a line will appear on the output in
the following format:

<severity>: <line>, <character>: <description> (<name>)


	<severity> will be either W for warning or E for error


	<line> is the line number where the rule was triggered


	<character> is the character where the rule was triggered,
or 0 if the rule applies to the whole line


	<description> is a short description of the issue


	<name> is the name of the rule that raised the issue




Note: the rule name can be used with the ignore, warning, error,
and configure options.

Some rules are configurable, and can be configured with the
configure option. This option takes a list of values in the form
<rule>:<value>,*<rule>*:<value>,etc.  For example, to set
the line length for the LineTooLong rule you can use ‘-o configure
LineTooLong:80’. If a rule is configurable, it will show the
configuration options in the documentation for that rule

The filename will be printed once before any errors or warnings
for that file. The filename is preceeded by +

Example Output:

+ example.robot
W: 2, 0: No suite documentation (RequireSuiteDocumentation)
E: 30, 0: No testcase documentation (RequireTestDocumentation)





To see a list of all configured rules, set the ‘list’ option to True:


cci task run robot_lint -o list True





Command Syntax

$ cci task run robot_lint




Options


	--configure CONFIGURE
	Optional

List of rule configuration values, in the form of rule:args.



	--ignore IGNORE
	Optional

List of rules to ignore. Use ‘all’ to ignore all rules



	--error ERROR
	Optional

List of rules to treat as errors. Use ‘all’ to affect all rules.



	--warning WARNING
	Optional

List of rules to treat as warnings. Use ‘all’ to affect all rules.



	--list LIST
	Optional

If option is True, print a list of known rules instead of processing files.



	--path PATH
	Optional

The path to one or more files or folders. If the path includes wildcard characters, they will be expanded. If not provided, the default will be to process all files under robot/<project name>










robot_testdoc

Description: Generates html documentation of your Robot test suite and writes to tests/test_suite.

Class: cumulusci.tasks.robotframework.RobotTestDoc


Command Syntax

$ cci task run robot_testdoc




Options


	--path PATH
	Required

The path containing .robot test files

Default: tests



	--output OUTPUT
	Required

The output html file where the documentation will be written

Default: tests/test_suites.html










run_tests

Description: Runs all apex tests

Class: cumulusci.tasks.apex.testrunner.RunApexTests


Command Syntax

$ cci task run run_tests




Options


	--test_name_match TESTNAMEMATCH
	Required

Pattern to find Apex test classes to run (“%” is wildcard).  Defaults to project__test__name_match from project config. Comma-separated list for multiple patterns.



	--test_name_exclude TESTNAMEEXCLUDE
	Optional

Query to find Apex test classes to exclude (“%” is wildcard).  Defaults to project__test__name_exclude from project config. Comma-separated list for multiple patterns.



	--namespace NAMESPACE
	Optional

Salesforce project namespace.  Defaults to project__package__namespace



	--managed MANAGED
	Optional

If True, search for tests in the namespace only.  Defaults to False



	--poll_interval POLLINTERVAL
	Optional

Seconds to wait between polling for Apex test results.



	--junit_output JUNITOUTPUT
	Optional

File name for JUnit output.  Defaults to test_results.xml



	--json_output JSONOUTPUT
	Optional

File name for json output.  Defaults to test_results.json



	--retry_failures RETRYFAILURES
	Optional

A list of regular expression patterns to match against test failures. If failures match, the failing tests are retried in serial mode.



	--retry_always RETRYALWAYS
	Optional

By default, all failures must match retry_failures to perform a retry. Set retry_always to True to retry all failed tests if any failure matches.



	-o required_org_code_coverage_percent PERCENTAGE
	Optional

Require at least X percent code coverage across the org following the test run.



	--required_per_class_code_coverage_percent REQUIREDPERCLASSCODECOVERAGEPERCENT
	Optional

Require at least X percent code coverage for every class in the org.



	--verbose VERBOSE
	Optional

By default, only failures get detailed output. Set verbose to True to see all passed test methods.










set_duplicate_rule_status

Description: Sets the active status of Duplicate Rules.

Class: cumulusci.tasks.metadata_etl.SetDuplicateRuleStatus


Command Syntax

$ cci task run set_duplicate_rule_status




Options


	--active ACTIVE
	Required

Boolean value, set the Duplicate Rule to either active or inactive



	--api_names APINAMES
	Optional

List of API names of entities to affect



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix

Default: $project_config.project__package__namespace



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










set_organization_wide_defaults

Description: Sets the Organization-Wide Defaults for specific sObjects, and waits for sharing recalculation to complete.

Class: cumulusci.tasks.metadata_etl.SetOrgWideDefaults


Command Syntax

$ cci task run set_organization_wide_defaults




Options


	--org_wide_defaults ORGWIDEDEFAULTS
	Required

The target Organization-Wide Defaults, organized as a list with each element containing the keys api_name, internal_sharing_model, and external_sharing_model. NOTE: you must have External Sharing Model turned on in Sharing Settings to use the latter feature.



	--timeout TIMEOUT
	Optional

The max amount of time to wait in seconds



	--api_names APINAMES
	Optional

List of API names of entities to affect



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix

Default: $project_config.project__package__namespace



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










uninstall_managed

Description: Uninstalls the managed version of the package

Class: cumulusci.tasks.salesforce.UninstallPackage


Command Syntax

$ cci task run uninstall_managed




Options


	--namespace NAMESPACE
	Required

The namespace of the package to uninstall.  Defaults to project__package__namespace



	--purge_on_delete PURGEONDELETE
	Required

Sets the purgeOnDelete option for the deployment.  Defaults to True










uninstall_packaged

Description: Uninstalls all deleteable metadata in the package in the target org

Class: cumulusci.tasks.salesforce.UninstallPackaged


Command Syntax

$ cci task run uninstall_packaged




Options


	--package PACKAGE
	Required

The package name to uninstall.  All metadata from the package will be retrieved and a custom destructiveChanges.xml package will be constructed and deployed to delete all deleteable metadata from the package.  Defaults to project__package__name



	--purge_on_delete PURGEONDELETE
	Required

Sets the purgeOnDelete option for the deployment.  Defaults to True



	--dry_run DRYRUN
	Optional

Perform a dry run of the operation without actually deleting any components, and display the components that would be deleted.










uninstall_packaged_incremental

Description: Deletes any metadata from the package in the target org not in the local workspace

Class: cumulusci.tasks.salesforce.UninstallPackagedIncremental


Command Syntax

$ cci task run uninstall_packaged_incremental




Options


	--path PATH
	Required

The local path to compare to the retrieved packaged metadata from the org.  Defaults to src.



	--package PACKAGE
	Required

The package name to uninstall.  All metadata from the package will be retrieved and a custom destructiveChanges.xml package will be constructed and deployed to delete all deleteable metadata from the package.  Defaults to project__package__name.



	--purge_on_delete PURGEONDELETE
	Required

Sets the purgeOnDelete option for the deployment.  Defaults to True.



	--ignore IGNORE
	Optional

Components to ignore in the org and not try to delete. Mapping of component type to a list of member names.



	--ignore_types IGNORETYPES
	Optional

List of component types to ignore in the org and not try to delete. Defaults to [‘RecordType’, ‘CustomObjectTranslation’].



	--dry_run DRYRUN
	Optional

Perform a dry run of the operation without actually deleting any components, and display the components that would be deleted.










uninstall_src

Description: Uninstalls all metadata in the local src directory

Class: cumulusci.tasks.salesforce.UninstallLocal


Command Syntax

$ cci task run uninstall_src




Options


	--path PATH
	Required

The path to the metadata source to be deployed

Default: src



	--unmanaged UNMANAGED
	Optional

If True, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix



	--namespace_strip NAMESPACESTRIP
	Optional

If set, all namespace prefixes for the namespace specified are stripped from files and filenames



	--check_only CHECKONLY
	Optional

If True, performs a test deployment (validation) of components without saving the components in the target org



	--test_level TESTLEVEL
	Optional

Specifies which tests are run as part of a deployment. Valid values: NoTestRun, RunLocalTests, RunAllTestsInOrg, RunSpecifiedTests.



	--specified_tests SPECIFIEDTESTS
	Optional

Comma-separated list of test classes to run upon deployment. Applies only with test_level set to RunSpecifiedTests.



	--static_resource_path STATICRESOURCEPATH
	Optional

The path where decompressed static resources are stored.  Any subdirectories found will be zipped and added to the staticresources directory of the build.



	--namespaced_org NAMESPACEDORG
	Optional

If True, the tokens %%%NAMESPACED_ORG%%% and ___NAMESPACED_ORG___ will get replaced with the namespace.  The default is false causing those tokens to get stripped and replaced with an empty string.  Set this if deploying to a namespaced scratch org or packaging org.



	--clean_meta_xml CLEANMETAXML
	Optional

Defaults to True which strips the <packageVersions/> element from all meta.xml files.  The packageVersion element gets added automatically by the target org and is set to whatever version is installed in the org.  To disable this, set this option to False



	--purge_on_delete PURGEONDELETE
	Optional

Sets the purgeOnDelete option for the deployment. Defaults to True



	--dry_run DRYRUN
	Optional

Perform a dry run of the operation without actually deleting any components, and display the components that would be deleted.










uninstall_pre

Description: Uninstalls the unpackaged/pre bundles

Class: cumulusci.tasks.salesforce.UninstallLocalBundles


Command Syntax

$ cci task run uninstall_pre




Options


	--path PATH
	Required

The path to the metadata source to be deployed

Default: unpackaged/pre



	--unmanaged UNMANAGED
	Optional

If True, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix



	--namespace_strip NAMESPACESTRIP
	Optional

If set, all namespace prefixes for the namespace specified are stripped from files and filenames



	--check_only CHECKONLY
	Optional

If True, performs a test deployment (validation) of components without saving the components in the target org



	--test_level TESTLEVEL
	Optional

Specifies which tests are run as part of a deployment. Valid values: NoTestRun, RunLocalTests, RunAllTestsInOrg, RunSpecifiedTests.



	--specified_tests SPECIFIEDTESTS
	Optional

Comma-separated list of test classes to run upon deployment. Applies only with test_level set to RunSpecifiedTests.



	--static_resource_path STATICRESOURCEPATH
	Optional

The path where decompressed static resources are stored.  Any subdirectories found will be zipped and added to the staticresources directory of the build.



	--namespaced_org NAMESPACEDORG
	Optional

If True, the tokens %%%NAMESPACED_ORG%%% and ___NAMESPACED_ORG___ will get replaced with the namespace.  The default is false causing those tokens to get stripped and replaced with an empty string.  Set this if deploying to a namespaced scratch org or packaging org.



	--clean_meta_xml CLEANMETAXML
	Optional

Defaults to True which strips the <packageVersions/> element from all meta.xml files.  The packageVersion element gets added automatically by the target org and is set to whatever version is installed in the org.  To disable this, set this option to False



	--purge_on_delete PURGEONDELETE
	Optional

Sets the purgeOnDelete option for the deployment. Defaults to True



	--dry_run DRYRUN
	Optional

Perform a dry run of the operation without actually deleting any components, and display the components that would be deleted.










uninstall_post

Description: Uninstalls the unpackaged/post bundles

Class: cumulusci.tasks.salesforce.UninstallLocalNamespacedBundles


Command Syntax

$ cci task run uninstall_post




Options


	--path PATH
	Required

The path to a directory containing the metadata bundles (subdirectories) to uninstall

Default: unpackaged/post



	--filename_token FILENAMETOKEN
	Required

The path to the parent directory containing the metadata bundles directories

Default: ___NAMESPACE___



	--purge_on_delete PURGEONDELETE
	Required

Sets the purgeOnDelete option for the deployment.  Defaults to True



	--managed MANAGED
	Optional

If True, will insert the actual namespace prefix.  Defaults to False or no namespace



	--namespace NAMESPACE
	Optional

The namespace to replace the token with if in managed mode. Defaults to project__package__namespace










unschedule_apex

Description: Unschedule all scheduled apex jobs (CronTriggers).

Class: cumulusci.tasks.apex.anon.AnonymousApexTask

Use the apex option to run a string of anonymous Apex.
Use the path option to run anonymous Apex from a file.
Or use both to concatenate the string to the file contents.


Command Syntax

$ cci task run unschedule_apex




Options


	--path PATH
	Optional

The path to an Apex file to run.



	--apex APEX
	Optional

A string of Apex to run (after the file, if specified).

Default: for (CronTrigger t : [SELECT Id FROM CronTrigger]) { System.abortJob(t.Id); }



	--managed MANAGED
	Optional

If True, will insert the project’s namespace prefix.  Defaults to False or no namespace.



	--namespaced NAMESPACED
	Optional

If True, the tokens %%%NAMESPACED_RT%%% and %%%namespaced%%% will get replaced with the namespace prefix for Record Types.



	--param1 PARAM1
	Optional

Parameter to pass to the Apex. Use as %%%PARAM_1%%% in the Apex code. Defaults to an empty value.



	--param2 PARAM2
	Optional

Parameter to pass to the Apex. Use as %%%PARAM_2%%% in the Apex code. Defaults to an empty value.










update_admin_profile

Description: Retrieves, edits, and redeploys the Admin.profile with full FLS perms for all objects/fields

Class: cumulusci.tasks.salesforce.ProfileGrantAllAccess


Command Syntax

$ cci task run update_admin_profile




Options


	--package_xml PACKAGEXML
	Optional

Override the default package.xml file for retrieving the Admin.profile and all objects and classes that need to be included by providing a path to your custom package.xml



	--record_types RECORDTYPES
	Optional

A list of dictionaries containing the required key record_type with a value specifying the record type in format <object>.<developer_name>.  Record type names can use the token strings {managed} and {namespaced_org} for namespace prefix injection as needed.  By default, all listed record types will be set to visible and not default.  Use the additional keys visible, default, and person_account_default set to true/false to override.  Page Layout Support: If you are using the Page Layouts feature, you can specify the page_layout key with the layout name to use for the record type.  If not specified, the default page layout will be used.  NOTE: Setting record_types is only supported in cumulusci.yml, command line override is not supported.



	--managed MANAGED
	Optional

If True, uses the namespace prefix where appropriate.  Use if running against an org with the managed package installed.  Defaults to False



	--namespaced_org NAMESPACEDORG
	Optional

If True, attempts to prefix all unmanaged metadata references with the namespace prefix for deployment to the packaging org or a namespaced scratch org.  Defaults to False



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix. Defaults to project__package__namespace



	--profile_name PROFILENAME
	Optional

Name of the Profile to target for updates (deprecated; use api_names to target multiple profiles).



	--include_packaged_objects INCLUDEPACKAGEDOBJECTS
	Optional

Automatically include objects from all installed managed packages. Defaults to True in projects that require CumulusCI 3.9.0 and greater that don’t use a custom package.xml, otherwise False.



	--api_names APINAMES
	Optional

List of API names of Profiles to affect










update_dependencies

Description: Installs all dependencies in project__dependencies into the target org

Class: cumulusci.tasks.salesforce.UpdateDependencies


Command Syntax

$ cci task run update_dependencies




Options


	--dependencies DEPENDENCIES
	Optional

List of dependencies to update. Defaults to project__dependencies. Each dependency is a dict with either ‘github’ set to a github repository URL or ‘namespace’ set to a Salesforce package namespace. GitHub dependencies may include ‘tag’ to install a particular git ref. Package dependencies may include ‘version’ to install a particular version.



	--ignore_dependencies IGNOREDEPENDENCIES
	Optional

List of dependencies to be ignored, including if they are present as transitive dependencies. Dependencies can be specified using the ‘github’ or ‘namespace’ keys (all other keys are not used). Note that this can cause installations to fail if required prerequisites are not available.



	--purge_on_delete PURGEONDELETE
	Optional

Sets the purgeOnDelete option for the deployment. Defaults to True



	--include_beta INCLUDEBETA
	Optional

Install the most recent release, even if beta. Defaults to False. This option is only supported for scratch orgs, to avoid installing a package that can’t be upgraded in persistent orgs.



	--allow_newer ALLOWNEWER
	Optional

Deprecated. This option has no effect.



	--prefer_2gp_from_release_branch PREFER2GPFROMRELEASEBRANCH
	Optional

If True and this build is on a release branch (feature/NNN, where NNN is an integer), or a child branch of a release branch, resolve GitHub managed package dependencies to 2GP builds present on a matching release branch on the dependency.



	--resolution_strategy RESOLUTIONSTRATEGY
	Optional

The name of a sequence of resolution_strategy (from project__dependency_resolutions) to apply to dynamic dependencies.



	--packages_only PACKAGESONLY
	Optional

Install only packaged dependencies. Ignore all unmanaged metadata. Defaults to False.



	--interactive INTERACTIVE
	Optional

If True, stop after identifying all dependencies and output the package Ids that will be installed. Defaults to False.



	--base_package_url_format BASEPACKAGEURLFORMAT
	Optional

If interactive is set to True, display package Ids using a format string ({} will be replaced with the package Id).



	--security_type SECURITYTYPE
	Optional

Which Profiles to install packages for (FULL = all profiles, NONE = admins only, PUSH = no profiles, CUSTOM = custom profiles). Defaults to FULL.



	--name_conflict_resolution NAMECONFLICTRESOLUTION
	Optional

Specify how to resolve name conflicts when installing an Unlocked Package. Available values are Block and RenameMetadata. Defaults to Block.



	--activate_remote_site_settings ACTIVATEREMOTESITESETTINGS
	Optional

Activate Remote Site Settings when installing a package. Defaults to True.



	--apex_compile_type APEXCOMPILETYPE
	Optional

For Unlocked Packages only, whether to compile Apex in the package only (package) or in the whole org (all). all is the default behavior.



	--upgrade_type UPGRADETYPE
	Optional

For Unlocked Package upgrades only, whether to deprecate removed components (deprecate-only), delete them (delete-only), or delete and deprecate based on safety (mixed). mixed is the default behavior.










update_metadata_first_child_text

Description: Updates the text of the first child of Metadata with matching tag.  Adds a child for tag if it does not exist.

Class: cumulusci.tasks.metadata_etl.UpdateMetadataFirstChildTextTask

Metadata ETL task to update a single child element’s text within metadata XML.

If the child doesn’t exist, the child is created and appended to the Metadata.   Furthermore, the value option is namespaced injected if the task is properly configured.


Example: Assign a Custom Object’s Compact Layout

Researching CustomObject [https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/customobject.htm] in the Metadata API documentation or even retrieving the CustomObject’s Metadata for inspection, we see the compactLayoutAssignment Field.  We want to assign a specific Compact Layout for our Custom Object, so we write the following CumulusCI task in our project’s cumulusci.yml.

tasks:
    assign_compact_layout:
        class_path: cumulusci.tasks.metadata_etl.UpdateMetadataFirstChildTextTask
        options:
            managed: False
            namespace_inject: $project_config.project__package__namespace
            entity: CustomObject
            api_names: OurCustomObject__c
            tag: compactLayoutAssignment
            value: "%%%NAMESPACE%%%DifferentCompactLayout"
            # We include a namespace token so it's easy to use this task in a managed context.





Suppose the original CustomObject metadata XML looks like:

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
    ...
    <label>Our Custom Object</label>
    <compactLayoutAssignment>OriginalCompactLayout</compactLayoutAssignment>
    ...
</CustomObject>





After running cci task run assign_compact_layout, the CustomObject metadata XML is deployed as:

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
    ...
    <label>Our Custom Object</label>
    <compactLayoutAssignment>DifferentCompactLayout</compactLayoutAssignment>
    ...
</CustomObject>








Command Syntax

$ cci task run update_metadata_first_child_text




Options


	--metadata_type METADATATYPE
	Required

Metadata Type



	--tag TAG
	Required

Targeted tag. The text of the first instance of this tag within the metadata entity will be updated.



	--value VALUE
	Required

Desired value to set for the targeted tag’s text. This value is namespace-injected.



	--api_names APINAMES
	Optional

List of API names of entities to affect



	--managed MANAGED
	Optional

If False, changes namespace_inject to replace tokens with a blank string



	--namespace_inject NAMESPACEINJECT
	Optional

If set, the namespace tokens in files and filenames are replaced with the namespace’s prefix

Default: $project_config.project__package__namespace



	--api_version APIVERSION
	Optional

Metadata API version to use, if not project__package__api_version.










update_package_xml

Description: Updates src/package.xml with metadata in src/

Class: cumulusci.tasks.metadata.package.UpdatePackageXml


Command Syntax

$ cci task run update_package_xml




Options


	--path PATH
	Required

The path to a folder of metadata to build the package.xml from

Default: src



	--output OUTPUT
	Optional

The output file, defaults to <path>/package.xml



	--package_name PACKAGENAME
	Optional

If set, overrides the package name inserted into the <fullName> element



	--managed MANAGED
	Optional

If True, generate a package.xml for deployment to the managed package packaging org



	--delete DELETE
	Optional

If True, generate a package.xml for use as a destructiveChanges.xml file for deleting metadata










upload_beta

Description: Uploads a beta release of the metadata currently in the packaging org

Class: cumulusci.tasks.salesforce.PackageUpload


Command Syntax

$ cci task run upload_beta




Options


	--name NAME
	Required

The name of the package version.



	--production PRODUCTION
	Optional

If True, uploads a production release.  Defaults to uploading a beta



	--description DESCRIPTION
	Optional

A description of the package and what this version contains.



	--password PASSWORD
	Optional

An optional password for sharing the package privately with anyone who has the password. Don’t enter a password if you want to make the package available to anyone on AppExchange and share your package publicly.



	--post_install_url POSTINSTALLURL
	Optional

The fully-qualified URL of the post-installation instructions. Instructions are shown as a link after installation and are available from the package detail view.



	--release_notes_url RELEASENOTESURL
	Optional

The fully-qualified URL of the package release notes. Release notes are shown as a link during the installation process and are available from the package detail view after installation.



	--namespace NAMESPACE
	Optional

The namespace of the package.  Defaults to project__package__namespace



	--resolution_strategy RESOLUTIONSTRATEGY
	Optional

The name of a sequence of resolution_strategy (from project__dependency_resolutions) to apply to dynamic dependencies. Defaults to ‘production’.










upload_production

Description: Uploads a production release of the metadata currently in the packaging org

Class: cumulusci.tasks.salesforce.PackageUpload


Command Syntax

$ cci task run upload_production




Options


	--name NAME
	Required

The name of the package version.

Default: Release



	--production PRODUCTION
	Optional

If True, uploads a production release.  Defaults to uploading a beta

Default: True



	--description DESCRIPTION
	Optional

A description of the package and what this version contains.



	--password PASSWORD
	Optional

An optional password for sharing the package privately with anyone who has the password. Don’t enter a password if you want to make the package available to anyone on AppExchange and share your package publicly.



	--post_install_url POSTINSTALLURL
	Optional

The fully-qualified URL of the post-installation instructions. Instructions are shown as a link after installation and are available from the package detail view.



	--release_notes_url RELEASENOTESURL
	Optional

The fully-qualified URL of the package release notes. Release notes are shown as a link during the installation process and are available from the package detail view after installation.



	--namespace NAMESPACE
	Optional

The namespace of the package.  Defaults to project__package__namespace



	--resolution_strategy RESOLUTIONSTRATEGY
	Optional

The name of a sequence of resolution_strategy (from project__dependency_resolutions) to apply to dynamic dependencies. Defaults to ‘production’.










upload_user_profile_photo

Description: Uploads a profile photo for a specified or default User.

Class: cumulusci.tasks.salesforce.users.photos.UploadProfilePhoto

Uploads a profile photo for a specified or default User.


Examples

Upload a profile photo for the default user.

tasks:
    upload_profile_photo_default:
        group: Internal storytelling data
        class_path: cumulusci.tasks.salesforce.users.UploadProfilePhoto
        description: Uploads a profile photo for the default user.
        options:
            photo: storytelling/photos/default.png





Upload a profile photo for a user whose Alias equals grace or walker, is active, and created today.

tasks:
    upload_profile_photo_grace:
        group: Internal storytelling data
        class_path: cumulusci.tasks.salesforce.users.UploadProfilePhoto
        description: Uploads a profile photo for Grace.
        options:
            photo: storytelling/photos/grace.png
            where: (Alias = 'grace' OR Alias = 'walker') AND IsActive = true AND CreatedDate = TODAY








Command Syntax

$ cci task run upload_user_profile_photo




Options


	--photo PHOTO
	Required

Path to user’s profile photo.



	--where WHERE
	Optional

WHERE clause used querying for which User to upload the profile photo for.






	No need to prefix with WHERE


	The SOQL query must return one and only one User record.


	If no “where” is supplied, uploads the photo for the org’s default User.









util_sleep

Description: Sleeps for N seconds

Class: cumulusci.tasks.util.Sleep


Command Syntax

$ cci task run util_sleep




Options


	--seconds SECONDS
	Required

The number of seconds to sleep

Default: 5










log

Description: Log a line at the info level.

Class: cumulusci.tasks.util.LogLine


Command Syntax

$ cci task run log




Options


	--level LEVEL
	Required

The logger level to use

Default: info



	--line LINE
	Required

A formatstring like line to log



	--format_vars FORMATVARS
	Optional

A Dict of format vars










generate_dataset_mapping

Description: Create a mapping for extracting data from an org.

Class: cumulusci.tasks.bulkdata.GenerateMapping

Generate a mapping file for use with the extract_dataset and load_dataset tasks.
This task will examine the schema in the specified org and attempt to infer a
mapping suitable for extracting data in packaged and custom objects as well as
customized standard objects.

Mappings must be serializable, and hence must resolve reference cycles - situations
where Object A refers to B, and B also refers to A. Mapping generation will stop
and request user input to resolve such cycles by identifying the correct load order.
If you would rather the mapping generator break such a cycle randomly, set the
break_cycles option to auto.

Alternately, specify the ignore option with the name of one of the
lookup fields to suppress it and break the cycle. ignore can be specified as a list in
cumulusci.yml or as a comma-separated string at the command line.

In most cases, the mapping generated will need minor tweaking by the user. Note
that the mapping omits features that are not currently well supported by the
extract_dataset and load_dataset tasks, such as references to
the User object.


Command Syntax

$ cci task run generate_dataset_mapping




Options


	--path PATH
	Required

Location to write the mapping file

Default: datasets/mapping.yml



	--namespace_prefix NAMESPACEPREFIX
	Optional

The namespace prefix to use

Default: $project_config.project__package__namespace



	--ignore IGNORE
	Optional

Object API names, or fields in Object.Field format, to ignore



	--break_cycles BREAKCYCLES
	Optional

If the generator is unsure of the order to load, what to do? Set to ask (the default) to allow the user to choose or auto to pick randomly.



	--include INCLUDE
	Optional

Object names to include even if they might not otherwise be included.



	--strip_namespace STRIPNAMESPACE
	Optional

If True, CumulusCI removes the project’s namespace where found in fields  and objects to support automatic namespace injection. On by default.










extract_dataset

Description: Extract a sample dataset using the bulk API.

Class: cumulusci.tasks.bulkdata.ExtractData


Command Syntax

$ cci task run extract_dataset




Options


	--mapping MAPPING
	Required

The path to a yaml file containing mappings of the database fields to Salesforce object fields

Default: datasets/mapping.yml



	--database_url DATABASEURL
	Optional

A DATABASE_URL where the query output should be written



	--sql_path SQLPATH
	Optional

If set, an SQL script will be generated at the path provided This is useful for keeping data in the repository and allowing diffs.

Default: datasets/sample.sql



	--inject_namespaces INJECTNAMESPACES
	Optional

If True, the package namespace prefix will be automatically added to (or removed from) objects and fields based on the name used in the org. Defaults to True.



	--drop_missing_schema DROPMISSINGSCHEMA
	Optional

Set to True to skip any missing objects or fields instead of stopping with an error.










load_dataset

Description: Load a sample dataset using the bulk API.

Class: cumulusci.tasks.bulkdata.LoadData


Command Syntax

$ cci task run load_dataset




Options


	--database_url DATABASEURL
	Optional

The database url to a database containing the test data to load



	--mapping MAPPING
	Optional

The path to a yaml file containing mappings of the database fields to Salesforce object fields

Default: datasets/mapping.yml



	--start_step STARTSTEP
	Optional

If specified, skip steps before this one in the mapping



	--sql_path SQLPATH
	Optional

If specified, a database will be created from an SQL script at the provided path

Default: datasets/sample.sql



	--ignore_row_errors IGNOREROWERRORS
	Optional

If True, allow the load to continue even if individual rows fail to load.



	--reset_oids RESETOIDS
	Optional

If True (the default), and the _sf_ids tables exist, reset them before continuing.



	--bulk_mode BULKMODE
	Optional

Set to Serial to force serial mode on all jobs. Parallel is the default.



	--inject_namespaces INJECTNAMESPACES
	Optional

If True, the package namespace prefix will be automatically added to (or removed from) objects and fields based on the name used in the org. Defaults to True.



	--drop_missing_schema DROPMISSINGSCHEMA
	Optional

Set to True to skip any missing objects or fields instead of stopping with an error.



	--set_recently_viewed SETRECENTLYVIEWED
	Optional

By default, the first 1000 records inserted via the Bulk API will be set as recently viewed. If fewer than 1000 records are inserted, existing objects of the same type being inserted will also be set as recently viewed.










load_custom_settings

Description: Load Custom Settings specified in a YAML file to the target org

Class: cumulusci.tasks.salesforce.LoadCustomSettings


Command Syntax

$ cci task run load_custom_settings




Options


	--settings_path SETTINGSPATH
	Required

The path to a YAML settings file










remove_metadata_xml_elements

Description: Remove specified XML elements from one or more metadata files

Class: cumulusci.tasks.metadata.modify.RemoveElementsXPath


Command Syntax

$ cci task run remove_metadata_xml_elements




Options


	--xpath XPATH
	Optional

An XPath specification of elements to remove. Supports the re: regexp function namespace. As in re:match(text(), ‘.*__c’)Use ns: to refer to the Salesforce namespace for metadata elements.for example: ./ns:Layout/ns:relatedLists (one-level) or //ns:relatedLists (recursive)Many advanced examples are available here: https://github.com/SalesforceFoundation/NPSP/blob/26b585409720e2004f5b7785a56e57498796619f/cumulusci.yml#L342



	--path PATH
	Optional

A path to the files to change. Supports wildcards including ** for directory recursion. More info on the details: https://www.poftut.com/python-glob-function-to-match-path-directory-file-names-with-examples/ https://www.tutorialspoint.com/How-to-use-Glob-function-to-find-files-recursively-in-Python



	--elements ELEMENTS
	Optional

A list of dictionaries containing path and xpath keys. Multiple dictionaries can be passed in the list to run multiple removal queries in the same task. This parameter is intended for usages invoked as part of a cumulusci.yml .



	--chdir CHDIR
	Optional

Change the current directory before running the replace










disable_tdtm_trigger_handlers

Description: Disable specified TDTM trigger handlers

Class: cumulusci.tasks.salesforce.trigger_handlers.SetTDTMHandlerStatus


Command Syntax

$ cci task run disable_tdtm_trigger_handlers




Options


	--handlers HANDLERS
	Optional

List of Trigger Handlers (by Class, Object, or ‘Class:Object’) to affect (defaults to all handlers).



	--namespace NAMESPACE
	Optional

The namespace of the Trigger Handler object (‘eda’ or ‘npsp’). The task will apply the namespace if needed.



	--active ACTIVE
	Optional

True or False to activate or deactivate trigger handlers.



	--restore_file RESTOREFILE
	Optional

Path to the state file to store or restore the current trigger handler state. Set to False to discard trigger state information. By default the state is cached in an org-specific directory for later restore.



	--restore RESTORE
	Optional

If True, restore the state of Trigger Handlers to that stored in the (specified or default) restore file.










restore_tdtm_trigger_handlers

Description: Restore status of TDTM trigger handlers

Class: cumulusci.tasks.salesforce.trigger_handlers.SetTDTMHandlerStatus


Command Syntax

$ cci task run restore_tdtm_trigger_handlers




Options


	--handlers HANDLERS
	Optional

List of Trigger Handlers (by Class, Object, or ‘Class:Object’) to affect (defaults to all handlers).



	--namespace NAMESPACE
	Optional

The namespace of the Trigger Handler object (‘eda’ or ‘npsp’). The task will apply the namespace if needed.



	--active ACTIVE
	Optional

True or False to activate or deactivate trigger handlers.



	--restore_file RESTOREFILE
	Optional

Path to the state file to store or restore the current trigger handler state. Set to False to discard trigger state information. By default the state is cached in an org-specific directory for later restore.



	--restore RESTORE
	Optional

If True, restore the state of Trigger Handlers to that stored in the (specified or default) restore file.

Default: True










vlocity_pack_export

Description: Executes the vlocity packExport command against an org

Class: cumulusci.tasks.vlocity.vlocity.VlocityRetrieveTask


Command Syntax

$ cci task run vlocity_pack_export




Options


	--job_file JOBFILE
	Required

Filepath to the jobfile



	--extra EXTRA
	Optional

Any extra arguments to pass to the vlocity CLI










vlocity_pack_deploy

Description: Executes the vlocity packDeploy command against an org

Class: cumulusci.tasks.vlocity.vlocity.VlocityDeployTask


Command Syntax

$ cci task run vlocity_pack_deploy




Options


	--job_file JOBFILE
	Required

Filepath to the jobfile



	--extra EXTRA
	Optional

Any extra arguments to pass to the vlocity CLI













            

          

      

      

    

  

  
    
    
    Flow Reference
    

    
 
  

    
      
          
            
  
Flow Reference

CumulusCI’s suite of standard flows are grouped into various categories depending on their intended purpose.


Org Setup

These are the primary flows for doing full setup of an org.
They typically include a flow from the Dependency Management group,
a flow from either the Deployment or Install / Uninstall group,
and a flow from the Post-Install Configuration group.


dev_org

Description: Set up an org as a development environment for unmanaged metadata

Flow Steps

1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) flow: deploy_unmanaged
    0) task: dx_convert_from
       when: project_config.project__source_format == "sfdx" and not org_config.scratch
    1) task: unschedule_apex
    2) task: update_package_xml
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3) task: deploy
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3.1) task: deploy
         when: project_config.project__source_format == "sfdx" and org_config.scratch
    4) task: uninstall_packaged_incremental
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    5) task: snapshot_changes
3) flow: config_dev
    1) task: deploy_post
    2) task: update_admin_profile
4) task: snapshot_changes








dev_org_beta_deps

Description: This flow is deprecated. Please use dev_org instead.

Flow Steps

1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) flow: deploy_unmanaged
    0) task: dx_convert_from
       when: project_config.project__source_format == "sfdx" and not org_config.scratch
    1) task: unschedule_apex
    2) task: update_package_xml
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3) task: deploy
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3.1) task: deploy
         when: project_config.project__source_format == "sfdx" and org_config.scratch
    4) task: uninstall_packaged_incremental
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    5) task: snapshot_changes
3) flow: config_dev
    1) task: deploy_post
    2) task: update_admin_profile








dev_org_namespaced

Description: Set up a namespaced scratch org as a development environment for unmanaged metadata

Flow Steps

1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) flow: deploy_unmanaged
    0) task: dx_convert_from
       when: project_config.project__source_format == "sfdx" and not org_config.scratch
    1) task: unschedule_apex
    2) task: update_package_xml
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3) task: deploy
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3.1) task: deploy
         when: project_config.project__source_format == "sfdx" and org_config.scratch
    4) task: uninstall_packaged_incremental
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    5) task: snapshot_changes
3) flow: config_dev
    1) task: deploy_post
    2) task: update_admin_profile
4) task: snapshot_changes








install_beta

Description: Install and configure the latest beta version

Flow Steps

1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) task: install_managed_beta
3) flow: config_managed
    1) task: deploy_post
    2) task: update_admin_profile
4) task: snapshot_changes








install_prod

Description: Install and configure the latest production version

Flow Steps

1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) task: install_managed
3) flow: config_managed
    1) task: deploy_post
    2) task: update_admin_profile
4) task: snapshot_changes








qa_org

Description: Set up an org as a QA environment for unmanaged metadata

Flow Steps

1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) flow: deploy_unmanaged
    0) task: dx_convert_from
       when: project_config.project__source_format == "sfdx" and not org_config.scratch
    1) task: unschedule_apex
    2) task: update_package_xml
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3) task: deploy
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3.1) task: deploy
         when: project_config.project__source_format == "sfdx" and org_config.scratch
    4) task: uninstall_packaged_incremental
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    5) task: snapshot_changes
3) flow: config_qa
    1) task: deploy_post
    2) task: update_admin_profile
4) task: snapshot_changes








qa_org_2gp

Description: Set up an org as a QA environment using a second-generation package

Flow Steps

1) flow: install_2gp_commit
    1) task: github_package_data
    2) flow: dependencies
        1) task: update_dependencies
        2) task: deploy_pre
    3) task: install_managed
2) flow: config_qa
    1) task: deploy_post
    2) task: update_admin_profile
3) task: snapshot_changes








qa_org_unlocked

Description: Set up an org as a QA environment using an unlocked package

Flow Steps

1) flow: install_unlocked_commit
    1) task: github_package_data
    2) flow: dependencies
        1) task: update_dependencies
        2) task: deploy_pre
    3) task: install_managed
2) flow: config_qa
    1) task: deploy_post
    2) task: update_admin_profile
3) task: snapshot_changes








regression_org

Description: Simulates an org that has been upgraded from the latest release of to the current beta and its dependencies, but deploys any unmanaged metadata from the current beta.

Flow Steps

1) flow: install_regression
    1) flow: dependencies
        1) task: update_dependencies
        2) task: deploy_pre
    2) task: install_managed
    3) task: install_managed_beta
2) flow: config_regression
    1) flow: config_managed
        1) task: deploy_post
        2) task: update_admin_profile
3) task: snapshot_changes










Dependency Management

These flows deploy dependencies (base packages and unmanaged metadata) to a target org environment.


beta_dependencies

Description: This flow is deprecated. Please use the dependencies flow and set the include_beta option on the first task, update_dependencies. Deploy the latest (beta) version of dependencies to prepare the org environment for the package metadata

Flow Steps

1) task: update_dependencies
2) task: deploy_pre








dependencies

Description: Deploy dependencies to prepare the org environment for the package metadata

Flow Steps

1) task: update_dependencies
2) task: deploy_pre










Deployment

These flows deploy the main package metadata to a target org environment.


deploy_packaging

Description: Process and deploy the package metadata to the packaging org

Flow Steps

0) task: dx_convert_from
   when: project_config.project__source_format == "sfdx"
1) task: unschedule_apex
2) task: create_managed_src
3) task: update_package_xml
4) task: deploy
5) task: revert_managed_src
6) task: uninstall_packaged_incremental








deploy_unmanaged

Description: Deploy the unmanaged metadata from the package

Flow Steps

0) task: dx_convert_from
   when: project_config.project__source_format == "sfdx" and not org_config.scratch
1) task: unschedule_apex
2) task: update_package_xml
   when: project_config.project__source_format != "sfdx" or not org_config.scratch
3) task: deploy
   when: project_config.project__source_format != "sfdx" or not org_config.scratch
3.1) task: deploy
     when: project_config.project__source_format == "sfdx" and org_config.scratch
4) task: uninstall_packaged_incremental
   when: project_config.project__source_format != "sfdx" or not org_config.scratch
5) task: snapshot_changes








deploy_unmanaged_ee

Description: Deploy the unmanaged metadata from the package to an Enterprise Edition org

Flow Steps

0) task: dx_convert_from
   when: project_config.project__source_format == "sfdx"
1) task: unschedule_apex
2) task: update_package_xml
3) task: create_unmanaged_ee_src
4) task: deploy
5) task: revert_unmanaged_ee_src
6) task: uninstall_packaged_incremental








unmanaged_ee

Description: Deploy the unmanaged package metadata and all dependencies to the target EE org

Flow Steps

1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) flow: deploy_unmanaged_ee
    0) task: dx_convert_from
       when: project_config.project__source_format == "sfdx"
    1) task: unschedule_apex
    2) task: update_package_xml
    3) task: create_unmanaged_ee_src
    4) task: deploy
    5) task: revert_unmanaged_ee_src
    6) task: uninstall_packaged_incremental










Install / Uninstall

These flows handle package installation and uninstallation in particular scenarios.


install_2gp_commit

Description: Install the 2GP package for the current commit

Flow Steps

1) task: github_package_data
2) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
3) task: install_managed








install_prod_no_config

Description: Install but do not configure the latest production version

Flow Steps

1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) task: install_managed
3) task: deploy_post








install_regression

Description: Install the latest beta dependencies and upgrade to the latest beta version from the most recent production version

Flow Steps

1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) task: install_managed
3) task: install_managed_beta








install_unlocked_commit

Description: Install the unlocked package for the current commit

Flow Steps

1) task: github_package_data
2) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
3) task: install_managed








uninstall_managed

Description: Uninstall the installed managed version of the package.  Run this before install_beta or install_prod if a version is already installed in the target org.

Flow Steps

1) task: uninstall_post
2) task: uninstall_managed










Post-Install Configuration

These flows perform configuration after the main package has been installed or deployed.


config_apextest

Description: Configure an org to run apex tests after package metadata is deployed

Flow Steps

1) task: deploy_post
2) task: update_admin_profile








config_dev

Description: Configure an org for use as a dev org after package metadata is deployed

Flow Steps

1) task: deploy_post
2) task: update_admin_profile








config_managed

Description: Configure an org for use after the managed package has been installed.

Flow Steps

1) task: deploy_post
2) task: update_admin_profile








config_packaging

Description: Configure packaging org for upload after package metadata is deployed

Flow Steps

1) task: update_admin_profile








config_qa

Description: Configure an org for use as a QA org after package metadata is deployed

Flow Steps

1) task: deploy_post
2) task: update_admin_profile








config_regression

Description: Configure an org for QA regression after the package is installed

Flow Steps

1) flow: config_managed
    1) task: deploy_post
    2) task: update_admin_profile










Continuous Integration

These flows are designed to be run automatically by a continuous integration (CI) system
in response to new commits. They typically set up an org and run Apex tests.


ci_beta

Description: Install the latest beta version and runs apex tests from the managed package

Flow Steps

1) flow: install_beta
    1) flow: dependencies
        1) task: update_dependencies
        2) task: deploy_pre
    2) task: install_managed_beta
    3) flow: config_managed
        1) task: deploy_post
        2) task: update_admin_profile
    4) task: snapshot_changes
2) task: run_tests








ci_feature

Description: Prepare an unmanaged metadata test org and run Apex tests. Intended for use against feature branch commits.

Flow Steps

0.5) task: github_parent_pr_notes
1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) flow: deploy_unmanaged
    0) task: dx_convert_from
       when: project_config.project__source_format == "sfdx" and not org_config.scratch
    1) task: unschedule_apex
    2) task: update_package_xml
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3) task: deploy
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3.1) task: deploy
         when: project_config.project__source_format == "sfdx" and org_config.scratch
    4) task: uninstall_packaged_incremental
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    5) task: snapshot_changes
3) flow: config_apextest
    1) task: deploy_post
    2) task: update_admin_profile
4) task: run_tests
5) task: github_automerge_feature
   when: project_config.repo_branch and project_config.repo_branch.startswith(project_config.project__git__prefix_feature)








ci_feature_2gp

Description: Install as a managed 2gp package and run Apex tests. Intended for use after build_feature_test_package.

Flow Steps

1) flow: install_2gp_commit
    1) task: github_package_data
    2) flow: dependencies
        1) task: update_dependencies
        2) task: deploy_pre
    3) task: install_managed
2) flow: config_apextest
    1) task: deploy_post
    2) task: update_admin_profile
3) task: run_tests








ci_feature_beta_deps

Description: This flow is deprecated. Please use ci_feature instead.

Flow Steps

0.5) task: github_parent_pr_notes
1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) flow: deploy_unmanaged
    0) task: dx_convert_from
       when: project_config.project__source_format == "sfdx" and not org_config.scratch
    1) task: unschedule_apex
    2) task: update_package_xml
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3) task: deploy
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    3.1) task: deploy
         when: project_config.project__source_format == "sfdx" and org_config.scratch
    4) task: uninstall_packaged_incremental
       when: project_config.project__source_format != "sfdx" or not org_config.scratch
    5) task: snapshot_changes
3) flow: config_apextest
    1) task: deploy_post
    2) task: update_admin_profile
4) task: run_tests
5) task: github_automerge_feature
   when: project_config.repo_branch and project_config.repo_branch.startswith(project_config.project__git__prefix_feature)








ci_master

Description: Deploy the package metadata to the packaging org and prepare for managed package version upload.  Intended for use against main branch commits.

Flow Steps

1) flow: dependencies
    1) task: update_dependencies
    2) task: deploy_pre
2) flow: deploy_packaging
    0) task: dx_convert_from
       when: project_config.project__source_format == "sfdx"
    1) task: unschedule_apex
    2) task: create_managed_src
    3) task: update_package_xml
    4) task: deploy
    5) task: revert_managed_src
    6) task: uninstall_packaged_incremental
3) flow: config_packaging
    1) task: update_admin_profile








ci_release

Description: Install a production release version and runs tests from the managed package

Flow Steps

1) flow: install_prod
    1) flow: dependencies
        1) task: update_dependencies
        2) task: deploy_pre
    2) task: install_managed
    3) flow: config_managed
        1) task: deploy_post
        2) task: update_admin_profile
    4) task: snapshot_changes
2) task: run_tests










Release Operations

These flows are used to release new package versions.


build_feature_test_package

Description: Create a 2gp managed package version

Flow Steps

1) task: update_package_xml
   when: project_config.project__source_format != "sfdx"
2) task: create_package_version








build_unlocked_test_package

Description: Create an Unlocked package version

Flow Steps

1) task: update_package_xml
   when: project_config.project__source_format != "sfdx"
2) task: create_package_version
3) task: promote_package_version








release_2gp_beta

Description: Upload and release a beta 2gp managed package version

Flow Steps

1) task: create_package_version
2) task: github_release
3) task: github_release_notes
4) task: github_automerge_main








release_2gp_production

Description: Promote the latest beta 2gp managed package version and create a new release in GitHub

Flow Steps

1) task: promote_package_version
2) task: github_release
3) task: github_release_notes








release_beta

Description: Upload and release a beta version of the metadata currently in packaging

Flow Steps

1) task: upload_beta
2) task: github_release
3) task: github_release_notes
4) task: github_automerge_main








release_production

Description: Upload and release a production version of the metadata currently in packaging

Flow Steps

1) task: upload_production
2) task: github_release
3) task: github_release_notes








release_unlocked_beta

Description: Upload and release a beta 2gp unlocked package version

Flow Steps

1) task: create_package_version
2) task: github_release
3) task: github_release_notes
4) task: github_automerge_main








release_unlocked_production

Description: Promote the latest beta 2GP unlocked package version and create a new release in GitHub

Flow Steps

1) task: promote_package_version
2) task: github_release
3) task: github_release_notes













            

          

      

      

    

  

  
    
    
    About CumulusCI
    

    
 
  

    
      
          
            
  
About CumulusCI



	History

	Contribute to CumulusCI









            

          

      

      

    

  

  
    
    
    History
    

    
 
  

    
      
          
            
  
History


3.55.0 (2022-03-24)

Changes


	CumulusCI now provides an option to verify server certificates using
root CA certs loaded from the system, instead of the default set of
CA certs bundled with the Python requests library. This is
considered experimental, so must be opted in by setting the
CUMULUSCI_SYSTEM_CERTS environment variable to True (#3114)


	Improvements to the custom locator strategy used by the Robot
Framework keyword input form data to find form fields and
lightning components based on label text. This locator strategy
(label:) is now up to 10x faster at finding non-lightning form
components, and is able to find elements with more complicated
labels (eg: labels with text inside of nested spans). (#3117)


	Fixed a bug that prevented the use of aliases for Robot Framework
page objects.(#3120)


	The Robot Framework keyword input form data now does a better job
of working with non-lightning checkboxes. (#3122)




Issues Closed


	Fixed an error that could occur when loading a project that uses
very old flow syntax with tasks instead of steps. (#3118)


	Fixed a bug when using sources to access another project from a
github branch, where the branch context was not available to
branch-based dependency resolvers. (#3123)


	The drop_missing_schema option was not respected by the
snowfakery task. Now it is. (#3125)







3.54.0 (2022-03-10)

Changes


	The install_managed and update_dependencies tasks:


	Now support apex_compile_type and upgrade_type options for
performing Unlocked Package installations. (#3105)


	Accept the options interactive and base-package-url-format,
which pause the automation and wait for the user to confirm the
list of packages to be installed. (#3093)






	The update_package_xml task now supports new Slack metadata types
(#3103)


	We added the ability to do Upserts during Data Loading
(documentation [https://cumulusci.readthedocs.io/en/stable/data.html#upserts]).
(#3099)


	Robot Framework tests can now pass a locator when calling
Go To Page for one of our bulit-in page objects (Listing, Detail,
Home), and the keyword will wait until that locator is visible. This
is mostly useful for custom pages where you need to wait for an
iframe or custom component to be available. (#3098)


	We improved our caching mechanisms to better handle projects whose
cross-project sources themselves have cross-project sources. (#3092)




Issues Closed


	Fixed a bug running the snowfakery task in parallel mode with orgs
connected using a Connected App. (#3109)







3.53.0 (2022-02-24)

Critical Changes


	CumulusCI now ships with Snowfakery 3.0. See the Snowfakery release
notes [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v3.0.0].
Snowfakery 3.0 ships with opt-in features that will become the
default in June 2022; please test your
recipes [https://snowfakery.readthedocs.io/en/latest/##snowfakery-3]
now with snowfakery_version: 3 to ensure compatibility.




Changes


	CumulusCI now has an update_data task that allows updates to
existing datasets, in coordination with Snowfakery 3.0.


	Orgs connected using cci org connect now keep track of which
connected_app service was used to connect them, and will use the
same connected_app service when getting a fresh access token, even
if it isn’t currently the default connected_app service. This
makes it easier to use CumulusCI with multiple connected_app
services. (Orgs that were connected before this update will continue
to use the default connected_app service.)


	When connecting a custom connected_app service, a default
login_url can be specified (to use a login URL other than
https://login.salesforce.com when connecting orgs using this
connected_app service).


	The deploy_marketing_cloud_package task now utilizes the new API
endpoint for deployments.


	CumulusCI commands are more resilient in the face of corrupted or
impossible to decode org config files.


	We added documentation about managing Robot Framework locators


	CumulusCI will now warn Windows users if long pathname support is
not set up correctly.




Issues Closed


	Fixed a bug in the JSON format output of cci service list –json







3.52.0 (2022-02-03)

Changes


	Flow steps can now be replaced with the same syntax for all step
types! (Current step types are: ‘task’ or ‘flow’). See the
[replacing a flow
step](https://cumulusci.readthedocs.io/en/latest/config.html?highlight=override##replace-a-flow-step)
docs for more details. CumulusCI is still compatible with the old
syntax which required setting the current step type to None when
replacing with a step of a differing type. (#3043)


	Whenever possible, while running the robot_libdoc task libdoc
generates relative pathnames when creating CSV output (#3058)


	Added a new option --preview to the robot_libdoc task. When set
to true it automatically opens a browser window to the generated
documentation. (#3057)


	The robot keyword Locate element by label has been removed from
the Salesforce.py library. This wasn’t designed to be a keyword but
was accidentally exported as one. If you want to find an input or
textarea element by its label you can use a locator of the form
label:<text> (eg: label:First Name) (#3048)


	Updated to Snowfakery
2.5.0 [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v2.5.0]


	If you have Python code that is importing CumulusCI’s config
classes, some of them have been reorganized into modules with a
snake_case name. The old CamelCase imports should still work, but
the new names are preferred for consistency with other parts of the
codebase.




Issues Closed


	Fixed an issue where overriding flow steps was not working as
documented. (#3043)


	We fixed a bug where the Run Task and Run Task Class robot
keywords throw an error like
AttributeError: module 'robot.api.logger' has no attribute 'log'
in rare cases (#3053)


	Fixed a bug in the snowfakery task which caused Unique
IDs to not always be actually unique. (#3059)







3.51.1 (2022-01-25)

Issues Closed


	We fixed an issue that could cause create_package_version to fail
when the version_base option is set to latest_github_release and
the latest GitHub release is a 1GP package version.







3.51.0 (2022-01-20)

Changes


	The cci flow doc command now only includes CumulusCI’s standard
flows unless the --project option is specified. (#3033)


	The run_tests task now has a
required_per_class_code_coverage_percent which ensures that every
class in your project meets the code coverage level specified.
(#3027)


	Marketing Cloud tasks:


	Added the marketing_cloud_get_user_info task to retrieve user
information from the Marketing Cloud REST API userinfo
endpoint. (#3039)


	The marketing_cloud_create_user task now creates an unlocked
user with a notification email address so that it is possible
for the user to log in. This task also has a new option,
activate_if_existing, which can be set to true to ensure
that if the user already exists in an inactive state, it will be
activated. (#3040)








Issues Closed


	Fixed an issue preventing step-level preflight checks from working
correctly in MetaDeploy when run in a cross-project flow. (#3034)


	The github_parent_pr_notes task now handles child pull requests
with an empty body. (#3038)


	The metadeploy_publish task now displays a clear error message if
you supply the wrong API URL for MetaDeploy. (#3034)


	The cci service default --project command presents a better error
message when called outside of a project directory. (#3037)


	Fixed a bug where the cci flow doc command would break when using
cross-project flows. (#3033)







3.50.0 (2022-01-06)

Changes


	Robot keywords have been updated to support the Spring 22’ release.
(#3021)


	Using channel declarations in load.yml, users can now do synthetic
data loads across multiple user accounts at once. This is faster for
some very large orgs. (#3016)




Issues Closed


	Added a missing image to the “Windows Install Steps” portion of
the docs. (#3013)


	Fixed a bug that prevented Get webelements from returning an empty
list if the locator was a custom locator created via the
register_locators function of
cumulusci.robotframework.locator_manager. (#3004)


	Fixed a bug that prevented the locator
SF:object.button:Assign Reviewers from working properly. (#3002)


	Fixed an issue where the --json flag was not outputting properly
formatted JSON with the cci task list command. (#3011)







3.49.0 (2021-12-09)

Critical Changes


	Python versions 3.6 and 3.7 are no longer supported. Please
ensure you have Python version 3.8, 3.9, or 3.10. (#2959)


	The dx_convert_from task now uses a custom Python task class
instead of cumulusci.tasks.sfdx.SFDXBaseTask. In most cases this
will have no visible impact, but if you have customized this task
config to change the command option, make sure you have also
explicitly set its class_path to
cumulusci.tasks.sfdx.SFDXBaseTask. (#2981)




Changes


	You can now get the CumulusCI version with cci --version. The
output is the same as the cci version command. (#2974)


	A new feature has been added to the robot_libdoc task. You can now
use --f csv to generate a CSV file with all of the keywords.
(#2985)


	New keywords Select Rows and Unselect Rows have been added to
the robot Listing page object (#2995)


	Queries passed to the SOQL Query keyword can now span multiple
lines. (#3006)




Issues Closed


	Fixed an issue where deleted components could still deploy into
persistent orgs. (#2981)







3.48.2 (2021-11-16)


	Fixed a regression which broke cci project init in CumulusCI
3.48.0 and 3.48.1. (#2986)







3.48.1 (2021-11-12)

Issues Closed


	Fixed a packaging issue which caused an error when installing on
systems without a C compiler.







3.48.0 (2021-11-11)

Critical Changes


	CumulusCI will be dropping support for Python 3.6 and 3.7 within the
next few releases. Please ensure you’re running Python 3.8 or
above.




Changes


	We added a new command, cci plan info. Similar to cci task info,
this command displays detailed information about a MetaDeploy
plan, and includes a --messages option to display user-facing
text. (#2946)


	Improved logging to show reduced timestamps, and provide some syntax
highlighting of output. (#2941)


	Snowfakery
2.2 [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v2.2]
is now included with CumulusCI. New features include unique IDs and
Numeric Counters. (#2962)




Issues Closed


	We added an improved error message when metadeploy_publish is
passed a lightweight tag. (#2955)


	Adjusted a check for .lightning. domains in the cci org connect
command. (#2970)


	We fixed an issue where stacktraces for some Apex test failures were
truncated. (#2961)







3.47.0 (2021-10-28)

Changes


	Added a cci plan list command for displaying a list of
MetaDeploy plans (#2940)


	Task options can now be marked as “sensitive”. These task options
that will be obfuscated when displayed at the beginning of each task
in a flow. (#2939)


	Improved error message when
uninstall_packaged_incremental is run in an
SFDX-format project without converting to Metadata API format first
(#2929)


	Improved error messaging for multiple scenarios where tasks are
improperly configured in cumulusci.yml. (#2923)


	We added a new task create_blank_profile that can be
used to create a new profile from scratch without any permissions
enabled. (This new task requires a Winter 22 Org or API 53.0)
(#2908)


	We’ve added a user-friendly error message when installing a package
using security_type “PUSH” with a 04t Package
Version ID. (#2935)







3.46.0 (2021-10-14)

Critical Changes


	Backwards incompatibility: the robot task option debug
has been renamed to robot_debug. (#2909)




Changes


	CumulusCI now has a schema published
here [https://github.com/SFDO-Tooling/CumulusCI/tree/main/cumulusci/schema/cumulusci.jsonschema.json].
This is primarily intended to be use for enabling linting in VS
Code, but could be used for any schema-aware editor or any
validation purpose. (#2902)


	We added a new task create_blank_profile that can be
used to create a new profile from scratch without any permissions
enabled. (#2908)


	Manually creating a Personal Access Token and pasting it into the
CLI is no longer required to connect a GitHub service. Instead,
CumulusCI now supports GitHub’s device authentication flow,
allowing you to authenticate via browser using a temporary device
code. (#2911)


	cci service info for a github service now displays
expiration dates for GitHub personal access tokens, if set. (#2912)


	Improved error messaging for multiple scenarios where tasks are
improperly configured in cumulusci.yml. (#2923)




Issues Fixed


	Fixed a bug where connecting a GitHub service with cci service connect was failing silently. (#2888)


	Fixed an issue where MetaDeploy steps using the old
filename_token and namespace_token
options could not be used. (#2914)







3.45.0 (2021-09-30)

Changes


	Updated the deploy_marketing_cloud_package task for compatibility
with the October 2021 release of Marketing Cloud. (#2899)


	The --max-lines option on the cci error info command has been
removed. (#2895)




Issues fixed


	Removed the unused --skip option for the cci flow run command.
(#2884)


	Flow descriptions no longer generate a warning. (#2885)


	We changed how the output from some commands and tasks are displayed
in the CLI. (#2887)


	Fixed a bug in freezing the load_dataset task options for
MetaDeploy. (#2900)


	The marketing cloud deploy task now properly exits when a result
status of FATAL_ERROR is returned. (#2897)


	We fixed a regression in the push_list task that affected 2GP push
upgrades (#2898)







3.44.1 (2021-09-17)

Issues Fixed


	We fixed a regression that resulted in upload failures for 2GP
packages that extend 1GP packages (closes ##2880).







3.44.0 (2021-09-16)

Changes


	CumulusCI uses package version Ids from 1GP releases wherever
available, reducing the need to install 1GP packages in an org to
build 2GP dependencies. (#2832)


	We added metadata_package_id and version_id options to allow
passing MetadataPackage (prefix 033) and MetadataPackageVersion
(prefix 04t) IDs to the push upgrade tasks. (#2837)


	cci flow info will now output all flow options defined. (#2845)


	We improved error messages for incorrect data mapping files (#2831).


	The snowfakery task supports specifying the loading_rules option
(#2861)


	The snowfakery task supports recipe options being supplied to
recipes using the recipe_options option (#2861).




Issues Fixed


	We fixed some errors in the documentation (#2854)


	We fixed an issue causing CumulusCI to fail to install releases that
contain an Unlocked Package without a namespace. (#2851)


	We added handling for issues that occur when running the
generate_dataset_mapping task for very large orgs (#2860).


	We fixed a regression in using cross-project sources in MetaDeploy
installers (#2875).







3.43.0 (2021-09-02)

Critical Changes


	We now support all package installation options for the
update_dependencies and install_managed tasks, including
activate_remote_site_settings, security_type,
name_conflict_resolution, and password (password not available
for update_dependencies). (#2811)

We also fixed a minor inconsistency in defaulting the
activate_remote_site_settings (or formerly activateRSS) option.
Projects that define custom tasks based on the
InstallPackageVersion class should ensure they explicitly set the
activate_remote_site_settings option, or accept the new default of
True.

MetaDeploy install plans now do not freeze defaulted package
install options. If your install plans are dependent on specific
install options, we recommend explicitly specifying them. Install
plans without explicit options will use the defaults at the time of
execution.





Changes


	The sources feature, which allows CumulusCI projects to consume
automation from other projects, now supports specifying a
resolution_strategy, just like dependencies. Sources can now
resolve to the same GitHub refs as corresponding dependencies,
including branch matching. The default behavior is to use the
production resolution strategy. (#2807)


	Added several new tasks for configuring Marketing Cloud:
marketing_cloud_create_subscriber_attribute,
marketing_cloud_create_user, and
marketing_cloud_update_user_role. (#2838)


	In the mapping file for the load_dataset task, the batch_size
can now be specified for Bulk API steps in addition to REST API
steps. (#2813)


	The snowfakery task now supports the ignore_row_errors option to
continue loading even if there are row errors. (#2819)


	We made significant updates to the documentation for Robot
Framework [https://cumulusci.readthedocs.io/en/stable/robot.html].
(#2834, ##2847)


	We improved option validation for the add_page_layout_fields task.
(#2828)




Issues Fixed


	Fixed handling of timezones when the start_time option is
specified for the push tasks. (#2814)


	Fixed the deploy_marketing_cloud_package task to handle changes to
the Marketing Cloud API. (#2816)


	Fixed an issue where MetaDeploy install steps that used 04t package
version Ids, including 2GP installations, were frozen with incorrect
titles. (#2817)


	Fixed an issue causing 2GP commit-status builds to fail when the
local Git repository has a detached HEAD (#2818)


	Fixed a bug in the dry_run option for the metadeploy_publish
task where explicitly setting the option to False did not disable
the dry run. (#2836)


	Improved the error message shown by the load_dataset task if a
table is missing from the dataset. (#2813)


	Improved the warning message shown when CumulusCI can’t encrypt org
and service config files. (#2839)




Internal Changes


	CumulusCI has improved infrastructure for its own integration tests.
(#2783)


	Filing a CumulusCI issue on GitHub now presents a form to enter
details. (#2829)


	Added a linter to ensure consistent formatting of YAML files within
the CumulusCI codebase. (#2844)







3.42.0 (2021-08-19)

Critical Changes


	The github_release task now requires the tag_prefix option to be
passed, because for 2nd-generation packages we can’t tell from the
version number whether it is a beta or not. We’ve updated the
standard release flows to set the tag_prefix appropriately, but if
you have custom flows using this task you will need to update them.
(#2792)


	In order to run the github_copy_subtree task for a specific
package version, you must now use the tag_name option instead of
the version option. Using the version option set to latest or
latest_beta is deprecated; it’s preferred to pass these values in
the tag_name option instead. (#2792)




Changes


	The uninstall_packaged_incremental task now defaults to ignoring
non-deletable CustomObjectTranslation metadata. If your project
customizes the ignore_types option on
uninstall_packaged_incremental, we recommend you add
CustomObjectTranslation to this option. (#2790)




Issues Fixed


	Fixed an issue where bulk job results were being miscounted. (Thanks
@sfdcale!) (#2789)


	Fixed an issue where GitHub tags for a 2GP package would always
include the “release” prefix (even for Beta package versions).
(#2792)







3.41.0 (2021-08-05)

Changes


	We added a new Metadata ETL task,
add_page_layout_fields, that allows adding fields to
existing layouts. (#2766)


	We added a task to enable an Einstein prediction:
enable_einstein_prediction (thanks, @erikperkins!)
(#2778)


	We added standard flows for releasing unlocked packages:
release_unlocked_beta] and release_unlocked_production (#2768)


	We added
documentation [https://cumulusci.readthedocs.io/en/stable/packaging.html]
for using CumulusCI to build managed 2GP packages, unlocked
packages, and extending NPSP and EDA with 2GP packages. (#2768)


	Contributions to CCI now require verification by isort, which
ensures consistency in the order that imports are used. (#2770)


	CumulusCI now supports deploying unmanaged dependencies in SFDX
source format. (#2735)


	The create_package_version] task now handles
dependencies that use a zip_url. (#2735)


	Updates to Github Actions configuration documentation. Thanks
@Julian88Tex (#2773)


	CumulusCI now automatically recognizes services and orgs configured
via environment variables. See the
docs [https://cumulusci.readthedocs.io/en/stable/headless.html] for
more details. (#2676 and ##2776)


	We’ve updated the Push Upgrade tasks (push_list,
push_sandbox, etc) task option start_time to accept ISO-8601
formatted datetimes. (#2769)


	You can now specify “sandbox”: true on a CUMULUSCI_ORG_*
variable in headless environments to indicate that the org you want
to connect to is a sandbox. when connecting sandbox orgs in a
headless environment. (#2753)




Issues Closed


	Fixed an issue where scratch orgs failed to be deleted in CI
environments. (#2676)


	Fixed an issue where deleting an org failed to mark the org as
deleted on CumulusCI’s keychain. (#2676)


	Fixed an issue where CumulusCI would fail on Linux distributions
that were incompatible with the keyring package.
(#2676)


	We fixed an issue causing the release_2gp_production
flow to fail with a dependency parsing error. (#2767)


	Fixed a couple issues with connecting CumulusCI to sandboxes using
enhanced domains. (#2753 and ##2765)


	Fixed a bug where the github_release task was not marking the “This
is a pre-release” checkbox for beta releases. (#2788)







3.40.1 (2021-07-22)

Issues Closed


	Fixed an issue where a missing dependency was causing the homebrew
installer formula to break.







3.40.0 (2021-07-22)

Critical Changes


	The create_package_version task no longer creates Unlocked
Packages from the unpackaged/pre and unpackaged/post directories
of dependencies, or local unpackaged/pre directories by default.
This behavior is now opt-in via the
create_unlocked_dependency_packages option, which defaults to
False. Projects using the old default behavior must explicitly set
this option. We believe the new behavior is a more sane default for
most 2GP projects. (#2741)




Changes


	The add_standard_value_set_entries task now supports value sets
for LeadStatus. (#2695, with thanks to @naicigam)


	We updated the default API version to 52.0. (#2740)




Issues Closed


	Fixed an issue where the the built-in connected app was not
accessible when running CumulusCI in a headless environment. (#2737)


	The create_package_version task now supports objectSettings in
the org definition file. (#2741)


	We fixed issues in working with files containing Unicode characters
on some Windows systems when using source-tracking commands. (#2739)


	Fixed a bug where the anon_apex task had option text that was
missing spaces. (#2736)







3.39.1 (2021-07-08)

Changes:


	Fix a bug with the integration of CumulusCI and the new SOQLQuery
Feature







3.39.0 (2021-07-08)

Changes:


	A new snowfakery task with better usability and
multi-processor support. Look at the CumulusCI docs to learn the new
syntax:
https://cumulusci.readthedocs.io/en/stable/data.html#generate-fake-data
(#2705)


	CumulusCI now uses Snowfakery 2.0, with various new features,
especially the ability to query into orgs. More information:
https://github.com/SFDO-Tooling/Snowfakery/releases/tag/2.0
(#2705)


	We improved our Robot documentation so that it’s possible to link
to keyword documentation instead of having to download it locally
(#2696)


	CumulusCI uses a new port (7788) for the built-in connected app to
lessen the chances that the port is in use. (#2698)


	CumulusCI now checks if the port associated with a callback
URL/redirect URI is in use during OAuth2 flows, and if so, raises a
more friendly error. (#2698)


	The generate_data_dictionary task now includes Custom Settings,
Custom Metadata Types, and Platform Events. (#2712)


	The generate_data_dictionary task now excludes any schema with
visibility set to Protected. This behavior can be turned off
(including protected schema) with the include_protected_schema
option. (#2712)


	The generate_data_dictionary task now parses object and field
metadata anywhere in a Salesforce DX release other than in the
unpackaged/ directory tree. (#2712)


	Builds that install feature-test 2GP packages now present a cleaner
error message when the current commit is not found on GitHub.
(#2713)


	SFDX and CumulusCI both support noancestors as a Scratch org config
option but CumulusCI generated a warning if users tried to specify
the option in cumulusci.yml. (#2721)




Issues closed:


	Fixed issue where CumulusCI did not correctly convert a package
version specified as a number in YAML to a string. This now raises a
warning. (#2692)


	Fixed a bug where OAuth errors were not reported in detail. (#2694)


	Fixed an issue where CumulusCI did not grant permissions to Custom
Tabs when running update_admin_profile without a custom
package.xml. Projects that use a custom package.xml with
update_admin_profile should update their manifest to include a
CustomTab wildcard for the same outcome. (#2699)


	Fixed an issue where the dx, dx_push, and dx_pull tasks did
not refresh the org’s access token. (#2703)


	Fixed issues in the generate_data_dictionary task that resulted in
failures when processing fields with blank Help Text or processing
standard fields. (#2706)


	Fixed an issue preventing generate_data_dictionary from working
with four-digit (1.0.0.0) 2GP version numbers. (#2712)


	Fixed an issue causing release_2gp_beta to fail to create a GitHub
release with a dependency-parsing error. (#2720)







3.38.0 (2021-06-24)

Changes:


	The built-in connected app that CumulusCI uses by default is now
visible in the output of the cci service list command. This makes
it possible to switch back and forth between this connected app and
another one as the current default when multiple connected_app
services are configured. The built-in connected_app service has the
name built-in and cannot be renamed or removed. (#2664)


	The generate_data_dictionary task includes a new option,
include_prerelease. If set to True, CumulusCI will include
unreleased schema in the data dictionary from the current branch on
GitHub, with the version listed as “Prerelease”. (#2671)


	Added a new task, gather_release_notes, which generates an HTML
file with release notes from multiple repositories. (#2633)


	The deploy_marketing_cloud_package task includes a new option,
custom_inputs, which can be used to specify values to fill in for
inputs in a Marketing Cloud package. (#2683)


	Mappings for the extract_dataset task can now specify a
soql_filter to restrict which records are extracted. Thanks
@sfdcale (#2663)


	Robot Framework: The Scroll Element Into View keyword in the
Salesforce library now scrolls the center of the element into view
rather than the top. (#2689)




Issues closed:


	Fixed a bug where CumulusCI could not parse the repository owner and
name from an ssh git remote URL if it used an ssh alias instead of
github.com. (#2684)


	Fixed a bug where cci service info <service_type> would display
None as the name for the default service if no name was provided.
(#2664)


	Fixed a missing dependency on the contextvars Python package in
Python 3.6.







3.37.0 (2021-06-10)

Changes


	The install_managed task now supports 2GP releases (#2655).


	We changed the behavior of the release_2gp_beta flow to always
upload a package version, even if metadata has not changed (#2651).


	We now support sourcing install keys for packages from environment
variables via the password_env_name dependency key (#2622).




Robot Framework


	We upgraded SeleniumLibrary to 5.x (#2660).


	We added a new keyword “select window” to Salesforce library, to
replace the keyword of the same name which was renamed in
SeleniumLibrary 5.x to ‘switch window’. We will be removing this
keyword in a future release; tests should use ‘switch window’
instead.




Issues Closed


	We corrected some JavaScript issues that were occurring with
Chrome 91. (#2652)


	We fixed a bug impacting the generate_data_dictionary task when
used with dependencies (#2653).


	We fixed an issue causing sfdx commands that had options with
spaces to fail to execute on Windows (#2656).


	We fixed an issue causing the creation of incorrect 2GP beta tags
(#2651).







3.36.0 (2021-05-27)

Changes


	Added the option tag_prefix to the github_release task. This
option can be set to specify what prefix you would like to use when
CumulusCI creates a release tag for you in GitHub. (#2642)


	The deploy_marketing_cloud_package task has been updated to match
changes to the Marketing Cloud Package Manager API. It also now
raises an exception if the deployment failed. (#2632)




Robot Framework


	Improved the output of the robot_libdoc task. (#2627)




Data generation with Snowfakery:


	Updated to Snowfakery
1.12 [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v1.12]
(#2538)




Issues Closed


	Fixed an issue where flow reference documentation was rendering with
an error. (#2646)


	CumulusCI will now remove orgs when the --delete-org option is
passed to cci flow run, even if an error occurs while running the
flow. (#2644)


	Fixed a bug where beta tags created via the release_2gp_beta flow
were not receiving the proper tag prefix. (#2642)


	Fixed namespace injection for filenames with a ___NAMESPACE___
token in sfdx format. (#2631) (Thanks @bethbrains)


	Fixed a bug in cci org connect where the --sandbox flag was
directing users to login at login.salesforce.com instead of
test.salesforce.com. (#2630)


	Fixed a regression where the skip key for a dependency could no
longer be specified as a single string instead of a list. (#2629)


	Fixed a regression in freezing the deploy_pre/deploy_post tasks
for MetaDeploy install plans. (#2626)


	Fixed bugs in the deploy_marketing_cloud_package task’s payload
construction. (#2620, ##2621)







3.35.0 (2021-05-13)

Critical Changes


	Upgraded Robot Framework to 4.x. For information about new features
and some backward incompatibilities see the Robot Framework 4.0
release
notes [https://github.com/robotframework/robotframework/blob/master/doc/releasenotes/rf-4.0.rst].
(#2603)


	The update_dependencies task now guarantees to resolve unpackaged
metadata directories (subdirectories of unpackaged/pre and
unpackaged/post) in alphabetical order, matching the behavior of
deploy_pre and deploy_post. unpackaged/pre/bar will deploy
prior to unpackaged/pre/foo. The previous behavior was undefined,
which caused rare problems. This change is critical only for
projects that have deployment-order dependencies between unpackaged
directories located in upstream dependencies and rely on the current
undefined load order. (#2588)




Changes


	The CumulusCI documentation has a new section: Testing with
Second-Generation
Packaging [https://cumulusci.readthedocs.io/en/latest/2gp-testing.html]
(#2597)


	CumulusCI has two new service types: oauth2_client &
marketing_cloud. These are considered experimental. (#2602)


	The marketing_cloud service allows users to connect to a Marketing
Cloud tenant via OAuth so that tasks that work with Marketing Cloud
can make API calls on the user’s behalf. (#2602)


	The oauth2_client service takes information for an individual
OAuth2 client which can then be used in place of the default client.
This currently applies only to the marketing_cloud service. To
setup a Marketing Cloud service with a specific OAuth2 client use:
cci service connect marketing-cloud <name-of-service> --oauth_client <name-of-oauth-client>.
(#2602)


	CumulusCI has a new task: deploy_marketing_cloud_package. This
task allows a user to pass the path to a .zip file to a Marketing
Cloud package (downloaded from the Marketing Cloud Package Manager)
and deploy the package via a marketing_cloud service (see above).
Note that successfully deploying a package using this task may
require permissions that are not generally available. (#2602)


	The install_managed and install_managed_beta tasks now take no
action if the specified package is already installed in the target
org. (#2590)


	The cci org list command can now output in JSON format by
passing it the --json flag. (#2593)




Issues Closed


	Fixed an issue parsing cumulusci.yml files that contained Unicode
characters on Windows. (#2617)


	Fixed an issue in the github_copy_subtree task where CumulusCI
would silently generate incorrect or truncated commits when a
directory was passed to the include task option. (#2601)


	The deploy_pre and deploy_post tasks avoid warnings by freezing
installer steps that match current expectations. (#2589)







3.34.1 (2021-04-30)

Issues Closed


	Fixed a regression in the load_dataset task where some sObjects
could not be loaded without explicitly turning off the new
set_recently_viewed option.







3.34.0 (2021-04-29)

Critical Changes:


	If you have custom flows that utilize the github_release task,
they will need to be updated to include the package_type option
(which is required). (#2546)




Changes:


	The github_release task now has a package_type option which is included in the information written to GitHub release tags. The following standard library “release” flows have been updated with hardcoded values (either 1GP or 2GP) for this option:

: - release_beta (1GP) - release_production (1GP) - release_2gp_beta (2GP) - release_2gp_production (2GP)

(#2546)



	The update_dependencies task now supports a packages_only
option, which suppresses the installation of unpackaged metadata
dependencies. This option is intended to support building
update-only or idempotent installers. (#2587)


	The github_automerge_main task has a new option,
skip_future_releases, which can be set to False to disable the
default behavior of skipping branches that are numeric (and thus
considered release branches) but not the lowest number. (#2582)


	Added an new option set_recently_viewed to the load_dataset task
that sets newly inserted data as recently viewed. This changes the
default behavior. By default (if you do not specify the option), the
first 1000 records inserted via the Bulk API will be set as recently
viewed. If fewer than 1000 records are inserted, existing objects of
the same type being inserted will also be set as recently viewed.
(#2578)


	The update_dependencies task can now consume 2GP releases in
upstream repositories, provided they’re stored in release tags as
generated by CumulusCI. (#2557)


	The extract_dataset and load_datast tasks now support adding or
removing a namespace from a mapping file to match the target org for
sObjects and not just fields. (#2532)


	The create_package_version task can now increment package version
numbers when the package is not in a released state. (#2547)


	Includes Snowfakery
1.10 [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v1.10]
with upgrades to its Fake data functions.




Issues Closed


	Fixed an error in the github_automerge_main task when using a
branch prefix that doesn’t contain a slash. (#2582)


	Fixed logic in the push_sandbox and push_all tasks which was
selecting the wrong package versions. (#2577)


	Improved logging of errors from sfdx while converting sfdx format
metadata to deploy via the Metadata API, so that they are not lost
when CumulusCI is embedded in another system like MetaCI or Metecho.
(#2574)







3.33.1 (2021-04-20)

Changes:


	The create_package_version task now accepts an --ancestor-id
option to specify the 04t Id of the package version that should be
considered the ancestor of a new managed package version. The option
can also be set to latest_github_release to look up the 04t Id of
the project’s most recent release on GitHub. (#2540)




Issues closed:


	Fixed a regression where the release_beta flow would throw an
error if the project has unmanaged github dependencies. (#2566)


	Fixed a regression where the cci service connect command could no
longer connect a service without giving it a name. Now a default
name will be assigned. (#2568)


	Fixed a regression when resolving unpackaged dependencies from
GitHub releases. (#2571)


	Fixed a regression with creating a scratch org if the devhub service
was configured but not set as the default. (#2570)


	Improved the formatting of cumulusci.yml validation warnings.
(#2567)







3.33.0 (2021-04-19)

Critical Changes:


	CumulusCI’s dependency management modules have been rewritten. This
grants new capabilities and removes some existing features. (#2456)


	All package installations now perform retries if the package is
not yet available.


	Package installations are also retried on common row locking
errors.


	You can now obtain fine-grained control over how your projects
resolve dependencies. It’s much easier to control where your
application uses beta managed packages and second-generation
packages to satisfy dependencies.


	You can now execute 2GP builds that use 2GPs from upstream
feature branches matching your current branch, not just release
branches.


	The update_dependencies task no longer supports uninstalling
managed packages in a persistent org as part of the dependency
installation process.


	The update_dependencies task no longer supports the
allow_newer option, which is always True.


	The install order of update_dependencies changes slightly
where multiple levels of upstream dependency have
unpackaged/pre metadata. Where previously one package’s
unpackaged/pre might be installed prior to its own upstream
dependency, unpackaged/pre will now always be installed
immediately prior to the repo’s package.


	Projects using unmanaged dependencies that reference GitHub
subfolders will see a change in resolution behavior. Previously,
a dependency specified like this:

dependencies:
    - github: https://github.com/SalesforceFoundation/NPSP
      subfolder: unpackaged/config/trial





would always deploy from the latest commit on the default
branch. Now, this dependency will be resolved to a GitHub commit
just like a dependency without a subfolder, selecting the latest
beta or production release as determined by the chosen
resolution strategy.



	The project__dependencies section in cumulusci.yml no longer
supports nested dependencies specified like this:

dependencies:
    - namespace: "test"
      version: "1.0"
      dependencies:
        - namespace: "parent"
          version: "2.2"





All dependencies should be listed in install order.









Changes:


	CumulusCI now supports named services! This means you can configure
multiple services of the same type under different names. If you
run cci service list you will note that your existing global
services will have the name global, and any project-specific
services will have the name project_name. (#2499)


	You must now specify both a service type and a service name when
connecting a new service using cci service connect.


	CumulusCI has a new command: cci service default. This command
sets the default service for a given type.


	CumulusCI has a new command: cci service rename. This command
renames a given service.


	CumulusCI has a new command: cci service remove. This command
removes a given service.






	A validator now checks cumulusci.yml and shows warnings about
values that are not expected. (#1624)


	Added a friendly error message when a GitHub repository cannot be
found when set as a dependency or cross-project source. (#2535)


	Task option command line arguments can now be specified with either
an underscore or a dash: e.g. clean_meta_xml can be specified as
either --clean_meta_xml or --clean-meta-xml or
-o clean-meta-xml (#2504)


	Adjustments to existing tasks:


	The update_package_xml task now supports additional metadata
types. (#2549)


	The push_sandbox and push_all tasks now use the Bulk API to
query for subscriber orgs. (#2338)


	The push_sandbox and push_all tasks now default to including
all orgs whose status is not Inactive, rather than only orgs
with a status of Active. This means that sandboxes, scratch
orgs, and Developer Edition orgs are included. (#2338)


	The user_alias option for the assign_permission_sets,
assign_permission_set_groups, and
assign_permission_set_licenses tasks now accepts a list of
user aliases, and can now create permission assignments for
multiple users with a single task invocation. (#2483)


	The command task now sets the return_values to a dictionary
that contains the return code of the command that was run.
(#2453)






	Data generation with Snowfakery:


	Updated to Snowfakery
1.9 [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v1.9]
(#2538)






	Robot Framework:


	The run task keyword now includes all task output in the robot
log instead of printing it to stdout. (#2453)


	Documented the use of the options/options section of CumulusCI
for the robot task. (#2536)






	Changes for CumulusCI developers:


	Tasks now get access to the --debug-mode option and can output
debugging information conditional on it. (#2481)






	cci org connect can now connect to orgs running in an internal
build environment with a different port. (#2501, with thanks to
@force2b)




Issues Closed:


	The load_custom_settings task now resolves a relative
settings_path correctly when used in a cross-project flow. (#2523)


	Fixed the min_version option for the push_sandbox and push_all
tasks to include the min_version and not only versions greater
than it. (#2338)







3.32.1 (2021-04-01)

April Fool’s! This is the real new release, because there was a
packaging problem with 3.32.0.




3.32.0 (2021-04-01)

Changes:


	A new task, create_network_member_groups, creates
NetworkMemberGroup records to grant specified Profiles or
Permissions Sets access to an Experience Cloud site (community).
(#2460, thanks @ClayTomerlin)


	A new preflight check task, get_existing_sites, returns a list of
existing Experience Cloud site names in the org. (#2493)


	It is now possible to create a flow which runs the same sub-flow
multiple times, as long as they don’t create a self-referential
cycle. (#2494)


	Improvements to support for releasing 2nd-generation (2GP) packages:


	The github_release task now includes the package version’s
04t id in the message of the tag that is created. (#2485)


	The promote_package_version task now defaults to promoting the
package version corresponding to the most recent beta tag in the
repository, if version_id is not specified explicitly. (#2485)


	Added a new flow, release_2gp_beta, which creates a beta
package version of a 2GP managed package and a corresponding tag
and release in GitHub. (#2509)


	Added a new flow, release_2gp_production, which promotes a 2gp
managed package version to released status and creates a
corresponding tag and release in GitHub. (#2510)






	Data generation with Snowfakery:


	Updated to Snowfakery
1.8.1 [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v1.8]
(#2516)


	Snowfakery can now use “load files” to provide hints about how
objects should be loaded.


	Values for the bulk_mode, api, and action parameters in
mapping files are now case insensitive.






	Robot Framework:


	Added a new keyword, Input Form Data, for populating form
fields of many different types. This keyword is considered
experimental but is intended to eventually replace
Populate Form. (#2496)


	Added a new keyword, Locate Element by Label, for finding form
inputs using their label. (#2496)


	Added a custom locator strategy called label which uses
Locate Element By Label (e.g. label:First Name). (#2496)


	Added two new options to the robot task: ordering and
testlevelsplit. These only have an effect when combined with
the processes option to run tests in parallel.








Issues Closed:


	The cci org import command now shows a clearer error message if
you try to import an org that is not a locally created scratch org.
(#2482)







3.31.0 (2021-03-18)

Changes:


	It is now possible to pass the --noancestors flag to sfdx when
creating a scratch org by setting noancestors: True in the scratch
org config in cumulusci.yml. Thanks @lionelarmanet (#2452)


	The robot_outputdir return value from the robot task is now an
absolute path. (#2442)


	New tasks:


	get_available_permission_sets: retrieves the list of available
permission sets from an org. (#2455)


	promote_2gp_package: will promote a Package2Version to the
“IsReleased” state, making it available for installation in
production orgs. (#2454)








Snowfakery
1.7 [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v1.7]:


	Adds support for Salesforce Person Accounts.




Issues Closed:


	cci project init no longer overwrites existing files. If files
already exist, it displays a warning and outputs the rendered file
template. (#1325)







3.30.0 (2021-03-04)

Critical changes:


	We are planning to remove functionality in CumulusCI’s dependency
management in a future release.


	The update_dependencies task will no longer support
uninstalling managed packages in a persistent org as part of the
dependency installation process.


	The allow_newer option on update_dependencies will be
removed and always be True.


	The project__dependencies section in cumulusci.yml will no
longer support nested dependencies specified like this :

dependencies:
  - namespace: "test"
    version: "1.0"
    dependencies:
      - namespace: "parent"
        version: "2.2"









All dependencies should be listed in install order.

We recommend reformatting nested dependencies and discontinuing use
of allow_newer and package uninstalls now to prepare for these
future changes.





Changes:


	We released a new suite of documentation for
CumulusCI [https://cumulusci.readthedocs.io/en/latest/].


	CumulusCI now caches org describe data in a local database to
provide significant performance gains, especially in
generate_dataset_mapping.


	The cci org browser command now has a --path option to open a
specific page and a --url-only option to output the login URL
without spawning a browser.


	We improved messaging about errors while loading cumulusci.yml.


	CumulusCI now uses Snowfakery 1.6 (see its release
notes [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v1.6]).







3.29.0 (2021-02-18)

Changes:


	The message shown at the end of running a flow now includes the org
name. ##2390, thanks @Julian88Tex


	Added new preflight check tasks:


	get_existing_record_types checks for existing Record Types.
##2371, thanks @ClayTomerlin


	get_assigned_permission_sets checks the current user’s
Permission Set Assignments. ##2386






	The generate_package_xml task now supports the Muting Permission
Set metadata type. ##2382


	The uninstall_packaged_incremental and uninstall_packaged tasks
now support a dry_run option, which outputs the destructiveChanges
package manifest to the log instead of executing it. ##2393


	Robot Framework:


	The Run Task keyword now uses the correct project config when
running a task from a different source project. ##2391


	The SalesforceLibrary has a new keyword,
Scroll Element Into View, which is more reliable on Firefox
than the keyword of the same name in SeleniumLibrary. ##2391








Issues closed:


	Fixed very slow cci org connect on Safari. ##2373


	Added a workaround for decode errors that sometimes happen while
processing cci logs on Windows. ##2392


	If there’s an error while doing JWT authentication to an org, we
now log the full response from the server. ##2384


	Robot Framework: Improved stability of the
ObjectManagerPageObject. ##2391







3.28.0 (2021-02-04)

Changes:


	Added a new task, composite_request, for calling the Composite
REST Resource. ##2341


	The create_package_version task has a new option, version_base,
which can be used to increment the package version from a different
base version instead of from the highest existing version of the 2gp
package. The build_feature_test_package flow now uses this option
to create a package version with the minor version incremented from
the most recent 1gp release published to github. ##2357


	The create_package_version task now supports setting a
post-install script and uninstall script when creating a managed
package version, by setting the post_install_script and
uninstall_script options. By default, these options will use the
values of install_class and uninstall_class from the package
section of cumulusci.yml. ##2366


	Updated to Snowfakery
1.5 [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v1.5].


	Robot Framework:


	The Click related list button keyword has been modified to be
more liberal in the types of DOM elements it will click on.
Prior to this change it only clicked on anchor elements, but now
also works for related list buttons that use an actual button
element. ##2356


	The Click modal button keyword now attempts to find the given
button anywhere on the modal rather than only inside a
force-form-footer element. ##2356








Issues closed:


	Robot Framework:


	Custom locators can now be used with keywords that expect no
element to be found (such as Page should not contain). This
previously resulted in an error. ##2346


	Fixed an error when setting the tagstatexclude option for the
robot task. ##2365






	Fixed a possible error when running CumulusCI flows embedded in a
multi-threaded context. ##2347







3.27.0 (2021-01-21)

Changes:


	Snowfakery 1.4 which includes min, max, round functions. PR ##2335


	The ensure_record_types task has a new option, force_create,
which will create the Record Type even if other Record Types already
exist on the object. (Thanks to @bethbrains) PR ##2323


	Allow num_records and num_records_tablename to be omitted when using
the task generate_and_load_from_yaml. PR ##2322


	Added a new Metadata ETL task, add_fields_to_field_set which allows
adding fields to existing field sets. (Thanks to @bethbrains) PR
##2334


	org_settings now accepts a dict option called settings in addition
to (or instead of) the existing definition_file option. (Thanks to
@bethbrains) PR ##2337


	New Robot Keywords for Performance Testing: ##2291



	Set Test Elapsed Time: This keyword captures a computed rather
than measured elapsed time for performance tests.


	Start Perf Time, End Perf Time: start a timer and then store
the result.


	Set Test Metric: store any test metric, not just elapsed time.









	CumulusCI now reports how long it took for flows to run. ##2249




Issues Closed:


	Fixed an error that could occur while cleaning cache directories.


	Fixed potential bugs in the Push Upgrade tasks.


	CumulusCI displays more user friendly error message when
encountering parsing errors in cumulusci.yml. ##2311


	We fixed an issue causing the extract_dataset task to fail in some
circumstances when both an anchor date and Record Types were used.
##2300


	Handle a possible gack while collecting info about installed
packages ##2299







3.26.0 (2021-01-08)

Changes:


	CumulusCI now reports how long it took for flows to run.


	Flows ci_feature and ci_feature_beta_deps now only run the
github_automerge_feature task if the branch begins with the
configured feature branch prefix.


	Running the deploy task with the path option set to a path that
doesn’t exist will log a warning instead of raising an error.


	When the ci_feature_2gp and qa_org_2gp flows install
dependencies, the latest beta version will be used when available.


	CumulusCI can now resolve dependencies using second-generation
packages (2GPs) for upstream projects. When a
ci_feature_2gp or qa_org_2gp flow runs
on a release branch (starting with prefix/NNN, where prefix is
the feature branch prefix and NNN is an integer), CumulusCI will
look for a matching release branch in each upstream dependency and
use a 2GP package build on that release branch, if present, falling
back to a 1GP beta release if not present.




Issues Closed:


	Fixed the org_settings task to handle nested structures in org
settings.


	Fixed a bug where cci task run could fail without a helpful error if
run outside of a cci project folder.


	Fixed an issue that caused CumulusCI to generate invalid
package.xml entries for Metadata API-format projects that include
__mocks__ or __tests__ LWC directories.


	Fixed the update_dependencies task to handle automatic injection
of namespace prefixes when deploying an unpackaged dependency. The
fix for the same issue in CumulusCI 3.25.0 was incomplete.


	Fixed an issue where an unquoted anchor_date in bulk data mapping
failed validation.


	CumulusCI now handles an error that can occur while collecting info
about installed packages


	Fixed an issue causing the extract_dataset task to fail in some
circumstances when both an anchor date and Record Types were used.


	Fixed an issue where the deprecated syntax for record types was not
working.







3.25.0 (2020-12-10)

Changes:


	New tasks:


	assign_permission_set_groups assigns Permission Set Groups to
a user if not already assigned.


	assign_permission_set_licenses assigns Permission Set Licenses
to a user if not already assigned.






	New preflight checks for use with MetaDeploy install plans:


	check_enhanced_notes_enabled checks if Enhanced Notes are
enabled


	check_my_domain_active checks if My Domain is active






	The github_copy_subtree task has a new option, renames, which
allows mapping between local and target path names when publishing
to support renaming a file or directory from the source repository
in the target repository.


	The ensure_record_types task has a new option,
record_type_description, which can be used to set the description
of the new record type if it is created.


	Robot Framework:


	New keyword Field value should be


	New keyword Modal should show edit error for fields to check
form field error notifications in Spring ‘21


	Adjusted Get field value and Select dropdown value fields to
work in Spring ‘21






	Command line improvements:


	The various cci org commands now accept an org name with the
--org option, for better consistency with other commands.
Specifying an org name without --org also still works.


	Running cci org default without specifying an org name will
now display the current default org.






	Org configs now have properties
org_config.is_multiple_currencies_enabled and
org_config.is_advanced_currency_management_enabled which can be
used to check if these features are enabled.


	The MergeBranchOld task, which was previously deprecated, has now
been removed.




Issues closed:


	Fixed the update_dependencies task to handle automatic injection
of namespace prefixes when deploying an unpackaged dependency.


	Fixed the query task, which was completely broken.


	Fixed the connected_app task to pass the correct username to sfdx.
Thanks @atrancadoris


	Fixed the display of task options with an underscore in
cci task info output.


	Fixed a confusing warning when creating record types using
Snowfakery. (#2093)


	Improved handling of errors while deleting a scratch org.







3.24.1 (2020-12-01)

Issues Closed:


	Fixed a regression that prevented running unmanaged flows on
persistent orgs, due to the use of the include_beta option while
installing dependencies, which is not allowed for persistent orgs.
We changed the update_dependencies task to ignore the option and
log a warning when running against a persistent org, instead of
erroring.







3.24.0 (2020-11-30)

Critical Changes:


	The flows dev_org, dev_org_namespaced, qa_org, ci_feature,
and install_beta now run the update_dependencies task with the
include_beta option enabled, so dependencies will be installed
using the most recent beta release instead of the most recent final
release. The beta_dependencies flow is no longer used and is
considered deprecated.


	The flows ci_feature_beta_deps and dev_org_beta_deps are now
deprecated and should be replaced by their default equivalents
above.


	The ci_feature_2gp flow has been changed to use config_apextest
instead of config_managed to avoid configuration steps that are
unnecessary for running Apex tests. This means that in order for
ci_feature_2gp to work, config_apextest must be set up to work
in both managed and unmanaged contexts.


	When connecting GitHub using cci service connect github, we now
prompt for a personal access token instead of a password. (GitHub
has removed support for accessing the API using a password as of
November 2020.) If you already had a token stored in the password
field, it will be transparently migrated to token. If you were
specifying --password on the command line when running this
command, you need to switch to --token instead.


	Removed the old cumulusci.tasks.command.SalesforceBrowserTest task
class which has not been used for some time.




Changes:


	Added a standard qa_org_2gp flow, which can be used to set up a QA
org using a 2nd-generation package version that was previously
created using the build_feature_test_package flow. This flow makes
use of the config_qa flow, which means that config_qa must be
set up to work in both managed and unmanaged contexts. This flow is
considered experimental and may change at any time.


	The batch_apex_wait task can now wait for Queueable Apex jobs in
addition to batch Apex.


	The custom_settings_value_wait task now waits if the expected
Custom Settings record does not yet exist, and does case insensitive
comparison of field names.


	Preflight checks:


	Added a task, check_sobject_permissions, to validate sObject
permissions.


	Added a task, check_advanced_currency_management, to determine
whether or not Advanced Currency Management is active.






	Robot Framework:


	In the Robot Framework Salesforce resource, the
Open Test Browser keyword now accepts an optional useralias
argument which can be used to open a browser as a different
user. The user must already have been created or authenticated
using the Salesforce CLI.






	Updated to Snowfakery
1.3 [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v1.3].




Issues Closed:


	Improved error handling of REST API responses to confirm they are
JSON.


	Fixed error handling in the load_dataset task in Windows.


	Fixed a bug where pressing Ctrl+C while running cci org connect
in Windows did not exit. (#2027)


	Fixed a bug where deploying an LWC component bundle using the
deploy task did not include files in subfolders.


	Fixed the deploy task so that deploying an empty metadata
directory does not error.


	Fixed a bug where the namespace_inject option was not included
when freezing deploy steps for MetaDeploy, causing namespace
injection to not work when running the plan in MetaDeploy.


	Fixed a bug where running the robot task as a cross-project task
could not load Robot Framework libraries from the other project.







3.23.0 (2020-11-12)

Changes:


	CumulusCI now accepts a normalized task option syntax in the form
of: --opt-name value. This can be used in place of the old task
option syntax: -o opt-name value.


	Tasks which perform namespace injection can now automatically
determine whether they are running in the context of a managed
installation or a namespaced scratch org. This means that in many
cases it is no longer necessary to explicitly specify options like
managed/unmanaged/namespaced/namespaced_org/namespace_inject,
or to use a separate flow for namespaced scratch orgs.


	The deploy_unmanaged flow now deploys sfdx-formatted metadata
using the Metadata API rather than the sfdx force:source:push
command. This avoids an issue where sfdx could show an error about
the pushed components conflicting with other changes that already
happened in the org. It also improves consistency between how
metadata is deployed to a scratch org and how it is deployed to a
packaging org.


	Removed the namespaced_org option for the update_dependencies
task, which was not functional.


	We added support for including SOQL where-clauses Salesforce Query
Robot keyword via the where keyword argument.


	The create_package_version task can accept a
static_resource_path option.


	The FindReplace task now has a replace_env option which, if true,
will interpret the replace option as the name of an environment
variable whose value should be used for the replacement.


	We added a new command, cci project doc, which will document
project-specific tasks to a reStructuredText file.




Issues closed:


	An error that occurred when building a second-generation package
using a cross-project task has been fixed.


	The github_package_data task will now work for projects using API
versions prior to 44.0.


	Fixed a bug where namespace injection of the %%%NAMESPACED_ORG%%%
token with the namespaced_org option enabled did not actually add
the namespace prefix unless the managed option was also enabled.


	We fixed an issue that resulted in the batch_size
option in a data mapping file being ignored.







3.22.0 (2020-10-29)

Changes:


	We added support for using Robot keywords from other projects that
are included as sources.


	The suites option of the robot task can now take a list of
suite paths. Paths can include a prefix representing a remote
repository as defined by the sources configuration option (eg:
-o suites npsp:robot/Cumulus/tests/api)


	The robot task has a new sources option to work in conjunction
with the global sources option to allow the use of keywords
and tests from other repositories.


	When running the robot task, the folder containing downloaded
repositories via the sources option are added to PYTHONPATH
so that robot tests can find library and resource files in those
repositories






	Bulk Data tasks now support adding or removing a namespace from a
mapping file to match the target org.


	We improved how we parse Boolean values in Bulk Data tasks and in
command line options. True can be represented as “yes”, “y”,
“true”, “on”, or “1”, with any capitalization, and False as
“no”, “n”, “false”, “off”, “0”. None as a synonym for
False is deprecated.


	We added support for including managed package release details in
automatically generated release notes.


	We added a task, assign_permission_sets, to assign Permission Sets
to a user.


	We updated the default API version for new projects to 50.0.


	The build_feature_test_package flow now creates a 2GP package
version with the “skip validation” option turned on.


	github_automerge_main now only merges to the lowest numbered
release branch when multiple are detected.




Issues closed:


	We fixed an issue with relative imports within parallel Robot test
runs by adding the repo root to PYTHONPATH.


	We fixed an issue with generating package.xml manifests for
directories that contain reports in folders that aren’t owned by
the project.


	We now handle an exception that may occur while creating merge
conflict PRs during parent-child automerges.







3.21.1 (2020-10-19)

Issues closed: - Added a workaround for a slow query error while looking
up installed packages in Winter ‘21 orgs.




3.21.0 (2020-10-15)

Changes:


	The update_admin_profile task now accepts the api_names option
to target extra Profiles, even when using a custom package.xml.


	The github_automerge_main task can now be used on source branches
other than the default branch to merge them into branches starting
with the branch_prefix option, as long as the source branch does
not also start with branch_prefix.


	Added preflight check tasks to validate org settings
(check_org_settings_value) and to check that Chatter is enabled
(check_chatter_enabled). These are intended for use with
MetaDeploy install plans.


	Updated to Snowfakery
1.2 [https://github.com/SFDO-Tooling/Snowfakery/releases/tag/v1.2].




Issues closed:


	Fixed an issue in the load_dataset task which left out
non-Person-Account Contacts if the dataset was extracted using the
REST API.







3.20.1 (2020-10-05)

Issues closed:


	Fixed a bug introduced in CumulusCI 3.20.0 in which the
upload_beta and upload_production tasks could hit a connection
error if uploading the package took over 10 minutes.


	We corrected edge cases in how we processed Boolean options for the
custom_settings_wait, exec_anon, and uninstall_post tasks.
(Thanks to @davidjray)







3.20.0 (2020-09-30)

Critical Changes:


	We’ve removed the standard flow: retrieve_scratch. The
recommended way for retrieving source-tracked changes is to use the
retrieve_changes task.


	Changes to automatic merging:


	The github_master_to_feature task has been renamed to
github_automerge_main. It still merges changes from the
default branch to feature branches. In the case of an orphaned
feature branch (a branch with a name like
feature/parent__child where feature/parent does not exist as
its own branch), the github_automerge_main branch will no
longer merge to the orphaned branch.


	The github_parent_to_children task has been renamed to
github_automerge_feature. It still merges changes from feature
branches to their children (e.g. feature/parent would be
merged to feature/parent__child). It is now possible to use
multiple double-underscores to create more deeply nested
children, and the task will only merge to the next level (e.g.
feature/parent would merge to feature/parent__child which
would merge to feature/parent__child__grandchild).


	The children_only option for these tasks has been removed. The
strategy for picking which branches to target for merging is now
determined by the source_branch.








Tasks, Flows, and Automation:


	cci flow list now displays flows in different groups that are
organized by functional area. (This is similar to how
cci task list currently works).


	The insert_record task can now be used against the Tooling API. We
clarified that this task can accept a dict of values if configured
in cumulusci.yml.


	Added support for newer metadata types to the update_package_xml
task.


	Previously, large data loads and extracts would use enormous amounts
of memory. Now they should use roughly constant amounts of memory.


	Adjusted tasks: install_managed and update_dependencies can now
install packages from just a version id (04t).


	Added support for creating 2GP packages (experimental)


	New task: github_package_data gets a package version id from a
GitHub commit status. It is intended primarily for use as part
of the ci_feature_2gp flow. Implementation details can be
found in the
features [https://cumulusci.readthedocs.io/en/latest/features.html]
section of the documentation.


	New task: create_package_version - Builds a 2gp package
(managed or unlocked) via a Dev Hub org. Includes some automated
handling of dependencies:


	New Flow: build_feature_test_package - Runs the
create_package_version task, and in the context of MetaCI it
will set a commit status with the package version id.


	New Flow: ci_feature_2gp - Retrieves the package version from
the commit status set by build_feature_test_package, installs
dependencies and the package itself in a scratch org, and runs
Apex tests. (There is another new task, github_package_data,
which is used by this flow.)








User Experience:


	Improved error messaging when encountering errors during bulk data
mapping validation.




Issues Closed:


	Fixed a very rare bug that caused CumulusCI to fail to retrieve
installed packages from an org when running package-related tasks or
evaluating when conditional expressions.


	Fixed UnicodeDecodeError while opening config files on Windows.


	Fixed a bug in cumulusci.core.sfdx.sfdx when capture_output is
False







3.19.1 (2020-09-18)

Issues closed:


	Fixed an issue (#2032) where REST API data loads incorrectly handled
Boolean values.







3.19.0 (2020-09-17)

Changes:


	Tasks and automation:


	CumulusCI now supports using the REST Collections API in data
load, extract, and delete operations. By default, CumulusCI will
select an API for you based on data volume (<2000 records uses
the REST API, >=2000 uses Bulk); a desired API can be
configured via the mapping file.


	Removed the namespace_tokenize option from tasks that deploy
metadata, and removed the namespace_inject option from tasks
that retrieve metadata, because it’s unclear when they would be
useful.


	The task create_permission_set allows for creating and assigning
a Permission Set that enables specific User Permissions. (Note:
other types of permissions are not yet supported).


	The task create_bulk_data_permission_set creates a Permission
Set with the Hard Delete and Set Audit Fields permissions for
use with data load operations. The org permission to allow Set
Audit Fields must be turned on.


	CumulusCI’s load_dataset and extract_dataset tasks now support
relative dates. To take advantage of relative dates, include the
anchor_date key (with a date in YYYY-MM-DD format) in each
mapping step you wish to relativize. On extract, dates will be
modified to be the same interval from the anchor date as they
are from the current date; on load, dates will be modified to be
the same interval from today’s date as they are from their
anchor. Both date and date-time fields are supported.






	Other:


	The oid_as_pk key is no longer supported in bulk data mappings.
(This key was already deprecated). Select object Id mode by
including the Id field in mappings.








Issues closed:



	Fixed an issue (#2001) that caused CumulusCI to extract invalid
data sets when using after: steps with autoincrement primary keys.


	Fixed an issue where the retrieve_changes task did not actually
retrieve folders.


	Fixed a bug in the metadeploy-publish task where labels starting
with “Install ” were not extracted for localization.


	Fixed a bug that prevented using JWT auth with sandboxes if the
sandbox’s instance_url did not include an instance name.


	Fixed a bug where cci project init generated an invalid mapping
for bulk data tasks.










3.18.0 (2020-09-03)

Changes:


	Tasks and automation:


	CumulusCI now tries 10 times (instead of 5) to install managed
package versions, which helps ameliorate timeouts when new
versions are released.


	We added support for CSV files to the push_list task.


	We added a ref option to github_copy_subtree to allow
publishing a git reference (commit hash, branch, or tag).


	Changed the disable_tdtm_trigger_handlers
(SetTDTMHandlerStatus) task so that trigger handler state is
remembered in the cache directory instead of REPO_ROOT.






	User experience:


	The cci error info command now defaults to showing the entire
traceback when it is more than 30 lines.






	Robot Framework:


	The following robot keywords have been updated to work with
Winter ‘21:


	Load related list


	Click related list button


	Click related item link


	Click related item popup link


	Go to object home


	Go to object list


	Go to record home


	Populate lookup field






	The keyword Load related list has been rewritten to be
slightly more efficient. It also has a new parameter tries
which can be used if the target is more than 1000 pixels below
the bottom of the window.








Issues Closed:


	Fixed a bug where cci error gist could throw a UnicodeDecodeError
on Windows (fixes ##1977)


	Fixed a bug where cci org list could throw a TypeError when run
outside a project directory (fixes ##1998)


	The metadeploy_publish task can now update translations for
language codes with more than 2 letters.


	Fixed a bug where the extract_dataset task could fail with a
UnicodeEnodeError on Windows.


	update_dependencies deduplicates its package install list, making
it possible to handle situations where the same beta package is
reached by two dependency paths.







3.17.0 (2020-08-20)

Changes:


	Tasks and automation:


	We added the upload_user_profile_photo and
upload_default_user_profile_photo tasks, which allow for
setting Users’ profile photos from images stored in the
repository. (Thanks to @spelak-salesforce).


	We added the property is_person_accounts_enabled to the
org_config object, which is available in when clauses.
(Thanks to @spelak-salesforce).






	Policies and inclusive language:


	We added information about Salesforce’s Open Source Community
Code of Conduct and Security policies.


	We updated documentation to more consistently refer to the
“main” branch, reflecting CumulusCI’s support for per-project
specification of main branches other than master.






	User experience:


	We modified how we handle situations where the default org is
not valid for better user experience.


	We catch a common mistake in entering command-line options
(-org instead of --org, as well as incorrectly-formatted
flow options) and show a clearer error.


	We now capture and display the InstanceName of orgs in
cci org list’s output.






	Robot Framework:


	We now cleanly fall back to the latest available API version for
Robot locators if the newest API version does not have an
available locator file. This change helps support Robot testing
on the latest prerelease editions of Salesforce.


	We included some updates to locators for API version 50.0.






	Other:


	We added a new environment variable, SFDX_SIGNUP_INSTANCE, and
an instance key in org definitions, to specify a preferred
instance routing. NOTE: this functionality requires Dev Hub
permissions that are not Generally Available.








Issues closed:


	Fixed a bug which prevented package install links from getting added
to release notes.


	Fixed a bug (#1914) which caused errors when customizing some Flow
steps with decimal step numbers.


	Fixed a bug making it difficult to troubleshoot issues with
Snowfakery and CumulusCI on Windows.


	Fixed a bug in update_admin_profile that resulted in errors when
attempting to manage Record Types across multiple objects.







3.16.0 (2020-08-06)

Changes:


	Project initialization:


	When starting a new CumulusCI project, the cci project init
command now uses the current git branch as the project’s
default branch.


	API version 49.0 is now set as the default for new projects.






	Bulk data tasks:


	Added a task called delete_data for deleting all data from
specified objects. This was previously available but required
manually adding it to cumulusci.yml


	The load_dataset, extract_dataset, and delete_data tasks
now support automatic namespace injection. When object and field
names are specified without namespaces, but the target org only
has them with a namespace prefix attached, CumulusCI
automatically adds the namespace prefix. This makes it easier
for projects to use a single mapping file for unmanaged orgs,
namespaced scratch org, and managed orgs.




This behavior is on by default, but may be disabled by setting the
inject_namespaces option to False. This feature is believed to be
backwards-compatible; however, projects that subclass built-in data
loading classes, or which use data loading tasks in very unusual
ways, might be impacted.


	The load_dataset and extract_dataset tasks have a new
option, drop_missing_schema. When enabled, this option causes
CumulusCI to silently ignore elements in a dataset or mapping
that are not present in the target org. This option is useful
when building datasets that support additional, optional managed
packages or features, which may or may not be installed.


	The extract_dataset and load_dataset tasks now support
Person Accounts. These will be handled automatically as long as
both Account and Contact are in the mapping file. Additional
fields should be added to the Account mapping rather than
Contact. Thanks @spelak-salesforce


	The generate_dataset_mapping task generates mappings in line
with the latest revisions of load/extract functionality: fields
are specified as a list, the table key is omitted, and
namespaces are stripped.


	The generate_dataset_mapping has improved logic for resolving
reference cycles between objects. If one of the lookup fields is
nillable, the object with that field will be listed first in the
generated mapping file.


	The generate_and_load_from_yaml task has a new option,
working_directory, which can be used to keep temporary files
for debugging. The debug_dir option has been removed.






	Robot Framework:


	The robot task has a new option, processes. If the value is
> 1, tests will be run in parallel in the given number of
processes, using pabot [https://pabot.org/]. Note: It’s still
up to the test author to make sure the tests won’t conflict
with each other when running in parallel. This feature is
considered experimental.


	Added an ObjectManager page object for interacting with the
Object Manager in Setup. Thanks to @rjanjanam


	RequestsLibrary [https://github.com/MarketSquare/robotframework-requests]
is now included as a way to test REST APIs from Robot Framework.






	Metadata ETL:


	Added a new task, set_field_help_text, which can be used to
update Help Text values on existing fields.


	Added a new task, update_metadata_first_child_text, which can
be used to update a single value in existing metadata. Thanks
@spelak-salesforce


	Added a new task, assign_compact_layout, which can update a
compact layout assignment in existing object metadata. Thanks
@spelak-salesforce






	Added a new task, github_copy_subtree, to allow publishing
selected files or folders to another repository after a release.
This allows publishing a subset of your project’s code from a
private repository to a public one, for example.


	The create_community task has a new option, skip_existing. When
True, the task will not error if a community with the specified name
already exists.


	The release_beta and release_production flows now generate a
section in the release notes on GitHub including package install
links.


	Task options can now use $project_config substitutions in any
position, not just at the start of the value.




Issues closed:


	Fixed a bug where changes to global orgs would be saved as
project-specific orgs.


	Fixed a bug where cumulusci.yml could fail to parse if certain
options were specified in cci project init (#1780)


	The install_managed task now recognizes an additional error
message that indicates a package version has not yet finished
propagating, and performs retries appropriately.


	Fixed a bug in the logic to prevent installing beta packages in
non-scratch orgs.


	Fixed a bug where the list_changes, retrieve_changes, and
snapshot_changes tasks could error while trying to reset sfdx
source tracking.


	Fixed a bug where the push_failure_report task could be missing
some failed orgs if there were more than 200 errors.


	Fixed a bug where the github_release_notes task could list a
change note under a wrong subheading from a different section.


	Fixed freezing of command tasks for MetaDeploy.




Internal changes (these should not affect you unless you’re interacting
with CumulusCI at the Python level):



	Standardized naming of different levels of configuration:


	BaseGlobalConfig is now UniversalConfig.


	BaseGlobalConfig.config_global_local_path is now
UniversalConfig.config_global_path


	BaseGlobalConfig.config_global_path is now
UniversalConfig.config_universal_path


	BaseProjectConfig.global_config_obj is now
universal_config_obj


	BaseProjectConfig.config_global is now config_universal


	BaseProjectConfig.config_global_local is now config_global


	EncryptedFileProjectKeychain.config_local_dir is now
global_config_dir


	BaseCumulusCI.global_config_class is now
universal_config_class


	BaseCumulusCI.global_config is now universal_config






	Added UniversalConfig.cumulusci_config_dir as a central way to
get the path for storing configuration.
UniversalConfig.config_local_dir was removed.


	OrgConfigs now keep track of which keychain they were loaded from,
and have a new save method which is the preferred
API for persisting updates to the config.










3.15.0 (2020-07-09)

Changes:


	The run_tests task now defaults to only logging tests that failed.
Set the verbose option to True to see all results including tests
that passed.


	The update_dependencies task now supports an ignore_dependencies
option, which prevents CumulusCI from processing a specific
dependency (whether direct or transitive). This feature may be
useful in installers for packages that extend other packages if the
installer is not meant to include the base package.


	Improvements to the mapping file for the extract_dataset and
load_dataset tasks:


	Fields can now be specified as a simple list of Salesforce API
names, instead of a mapping. CumulusCI will infer the database
column names.


	Mappings may omit the table key and CumulusCI will use the
object name.


	The tasks will check and show an error if mappings do not use a
consistent object Id mode.


	Mappings can now include junction objects with no additional
fields.






	The generate_dataset_mapping task now has an include option to
specify additional objects to include in the mapping if they aren’t
found by the default heuristics.


	Added additional tasks intended for use as preflight checks for
MetaDeploy install plans:


	check_sobjects_enabled returns a set of available SObject
names.


	check_org_wide_defaults returns a boolean indicating whether
Organization-Wide Defaults match the specified values.






	The update_package_xml task now supports the MessageChannel
metadata type.


	Adjusted the default rules for the robot_lint task.


	CumulusCI can be configured to always show Python stack traces in
the case of an error by setting the show_stacktraces option to
True in the cli section of ~/.cumulusci/cumulusci.yml.


	The prompt provided by cci org shell now has access to the Tooling
API through the keyword tooling.


	When using the JWT OAuth2 flow, CumulusCI can be configured to use
alternate Salesforce login URLs by setting the SF_PROD_LOGIN_URL and
SF_SANDBOX_LOGIN_URL environment variables.




Issues closed:


	Fixed a UnicodeDecodeError that could happen while using the
extract_dataset task on Windows. (#1838)


	Fixed support for the CustomHelpMenuSection metadata type in the
update_package_xml task. (#1832)


	Deleting a scratch org now clears its domain from showing in cci org list.


	If you try to use cci org connect with a login URL containing
lightning.force.com, CumulusCI will explain that you should use
the .my.salesforce.com domain instead.


	Fixed an issue with deriving the Lightning domain from the instance
URL for some orgs.







3.14.0 (2020-06-18)

Changes:


	Added a generic dx task which makes it easy to run Salesforce CLI
commands against orgs in CumulusCI’s keychain. Use the command
option to specify the sfdx command.


	Tasks which do namespace injection now support the
%%%NAMESPACE_DOT%%% injection token, which can be used to support
references to packaged Apex classes and Record Types. The token is
replaced with ns. rather than ns__ (for namespace ns).


	Updated to Robot Framework 3.2.1. Robot Framework has a new parser
with a few backwards incompatible changes. For details see the
release
notes [https://github.com/robotframework/robotframework/blob/master/doc/releasenotes/rf-3.2.rst].


	The run_tests task now gracefully handles the
required_org_code_coverage_percent option as a string or an
integer.


	CumulusCI now logs a success message when a flow finishes running.




Issues closed:


	Fixed a regression introduced in CumulusCI 3.13.0 where connections
to a scratch org could fail with a ReadTimeout or other connection
error if more than 10 minutes elapsed since a prior task that
interacted with the org. This is similar to the fix from 3.13.2, but
for scratch orgs.


	Show a clearer error message if dependencies are configured in an
unrecognized format.







3.13.2 (2020-06-10)

Issues closed:


	Fixed a regression introduced in CumulusCI 3.13.0 where connections
to Salesforce could fail with a ReadTimeout or other connection
error if more than 10 minutes elapsed since a prior task that
interacted with the org.







3.13.1 (2020-06-09)

Issues closed:


	Fixed a bug with “after:” steps in the load_dataset
task.


	Fixed a bug with record types in the extract_dataset
task.







3.13.0 (2020-06-04)

Changes:


	A new Metadata ETL task, add_picklist_entries, safely adds
picklist values to an existing custom field.


	Added the cci org prune command to automatically remove all
expired scratch orgs from the CumulusCI keychain.


	Improvements to the cci org shell command:


	Better inline help


	New query and describe functions






	Scratch org creation will now wait up to 120 minutes for the org to
be created to avoid timeouts with more complex org shapes.


	The generate_data_dictionary task now has more features for
complex projects. By default, the task will walk through all project
dependencies and include them in the generated data dictionaries.
Other non-dependency projects can be included with the
additional_dependencies option. The output format has been
extensively improved.


	The run_tests task supports a new option,
required_org_code_coverage_percent. If set, the task will fail if
aggregate code coverage in the org is less than the configured
value. Code coverage verification is available only in unmanaged
builds.


	The install_managed and update_dependencies tasks now accept a
security_type option to specify whether the package should be
installed for all users or for admins only.


	when expressions can now use the has_minimum_package_version
method to check if a package is installed with a sufficient version.
For example:
when: org_config.has_minimum_package_version("namespace", "1.0")


	Robot Framework:


	Added a new keyword in the modal page objects,
Select dropdown value. This keyword will be available whenever
you use the Wait for modal keyword to pull in a modal page
object.








Issues closed:



	Limited the variables available in global scope for the
cci shell command.


	Tasks based on BaseSalesforceApiTask which use the Bulk API now
default to using the project’s API version rather than 40.0.


	Bulk data tasks:


	The extract_dataset task no longer converts to snake_case
when picking a name for lookup columns.


	Improved error message when trying to use the load_dataset
command with an incorrect record type.


	Fixed a bug with the generate_mapping_file option.














3.12.2 (2020-05-07)

Changes:


	Added a task, set_duplicate_rule_status, which allows selective
activation and deactivation of Duplicate Rules.


	The create_community task now retries multiple times if there’s
an error.


	The generate_data_dictionary task now supports multi-select
picklist fields and will indicate the related object for lookup
fields.


	The update_package_xml task now supports the NavigationMenu
metadata type.




Issues closed:


	In the Salesforce library for Robot Framework, fixed locators for
the actions ribbon and app launcher button in Summer ‘20.


	Fixed the load_dataset task so that steps which don’t explicitly
specify a bulk_mode will inherit the option specified at the task
level.


	Fixed error handling if an exception occurs within one of the cci error
commands.


	Fixed error handling if the Metadata API returns a response that is
marked as done but also contains an errorMessage.







3.12.1 (2020-04-27)

Fixed a problem building the Homebrew formula for installing CumulusCI
3.12.0.




3.12.0 (2020-04-27)

Changes:


	We’ve removed the prompt that users see when trying to use a
scratch org that has expired, and now automatically recreate the
scratch org.


	The load_dataset task now automatically avoids creating Bulk API
batches larger than the 10 million character limit.


	Robot Framework:


	When opening an org in the browser, the Salesforce library now
attempts to detect if the org was created using the Classic UI
and automatically switch to Lightning Experience.


	The Salesforce library now has preliminary support for Summer
‘20 preview orgs.






	CumulusCI now directs simple-salesforce to return results as
normal Python dicts instead of OrderedDicts. This should have
minimal impact since normal dicts are ordered in the versions of
Python that CumulusCI supports, but we mention it for the sake of
completeness.




Issues closed:


	Fixed an issue where non-ASCII output caused an error when trying to
write to the CumulusCI log in Windows. (#1619)







3.11.0 (2020-04-17)

Changes:


	CumulusCI now includes
Snowfakery [https://pypi.org/project/snowfakery/], a tool for
generating fake data. It can be used to generate and load data into
an org via the new generate_and_load_from_yaml task.


	Added two new preflight check tasks for use in MetaDeploy:
get_available_licenses and
get_available_permission_set_licenses. These tasks make available
lists of the License Definition Keys for the org’s licenses or
PSLs.


	The get_installed_packages task now logs its result.


	Robot Framework: Added two new keywords (Get Fake Data and
Set Faker Locale) and a global robot variable (${faker}) which
can be used to generate fake data using the
Faker [https://pypi.org/project/Faker/] library.




Issues closed:


	Fixed an error when loading a dependency whose cumulusci.yml
contains non-breaking spaces.


	Fixed a PermissionError when running multiple concurrent CumulusCI
commands in Windows. (#1477)


	Show a more helpful error message if a keychain entry can’t be
loaded due to a change in the encryption key.


	Fixed the org_settings task to use the API version of the org
rather than the API version of the package.


	In the Salesforce Robot Framework library, the Open App Launcher
keyword now tries to detect and recover from an occasional situation
where the app launcher fails to load.







3.10.0 (2020-04-02)

Changes:


	Added custom_settings_value_wait task to wait for a custom setting
to have a particular value.


	The metadeploy_publish task now has a labels_path option which
specifies a folder to store translations. After publishing a plan,
labels_en.json will be updated with the untranslated labels from the
plan. Before publishing a plan, labels from other languages will be
published to MetaDeploy.




Issues closed:


	Fixed an issue where running subprocesses could hang if too much
output was buffered.







3.9.1 (2020-03-25)

Issues closed:


	The batch_apex_wait task will now detect aborted and failed jobs
instead of waiting indefinitely.


	Fixed reporting of errors from Robot Framework when it exits with a
return code > 250.


	Fixed an ImportError that could happen when importing the new
metadata ETL tasks.


	Fixed bugs in how the set_organization_wide_defaults and
update_admin_profile tasks operated in namespaced scratch orgs.


	Show a more helpful error message if CumulusCI can’t find a
project’s repository or release on GitHub. (#1281)


	Fixed the message shown for skipped steps in cci flow info.


	Fixed a regression which accidentally removed support for the
bulk_mode option in bulk data mappings.







3.9.0 (2020-03-16)

Critical changes:


	The update_admin_profile task can now add field-level permissions
for all packaged objects. This behavior is the default for projects
with minimum_cumulusci_version >= 3.9.0 that are not using the
package_xml option. Other projects can opt into it using the
include_packaged_objects option.

The Python class used for this task has been renamed to
ProfileGrantAllAccess and refactored to use the Metadata ETL
framework. This is a breaking change for custom tasks that
subclassed UpdateAdminProfile or UpdateProfile.



	Refactored how CumulusCI uses the Bulk API to load, extract, and
delete data sets. These changes should have no functional impact,
but projects that subclass CumulusCI’s bulk data tasks should
carefully review the changes.




Changes:


	New projects created using cci project init will now get set up
with scratch org settings to:


	Use the Enhanced Profile Editor


	Allow logging in as another user


	Not force relogin after Login-As






	If cumulusci.yml contains non-breaking spaces in indentation, they
will be automatically converted to normal spaces.


	Bulk data tasks:


	Added improved validation that mapping files are in the expected
format.


	When using the ignore_row_errors option, warnings will be
suppressed after the 10th row with errors.








Issues closed:


	The github_release task now validates the commit option to make
sure it is in the right format.


	If there is an error from sfdx while using the retrieve_changes
task, it will now be logged.







3.8.0 (2020-02-28)

Changes:


	The batch_apex_wait task can now wait for chained batch jobs, i.e.
when one job starts another job of the same class.


	The metadata ETL tasks that were added in cumulusci 3.7.0 have been
refactored to use a new library,
cumulusci.utils.xml.metadata_tree, which streamlines building
Salesforce Metadata XML in Python. If you got an early start writing
custom tasks using the metadata ETL task framework, you may need to
adjust them to work with this library instead of lxml.




Issues closed:


	Adjusted the run_tests task to avoid an error due to not being
able to access the symbol table for managed Apex classes in Spring
‘20. Due to this limitation, CumulusCI now will not attempt to
retry class-level concurrency failures when running Apex unit tests
in a managed package. Such failures will be logged but will not
cause a build failure.


	Corrected a bug in storing preflight check results for MetaDeploy
when multiple tasks have the same path.







3.7.0 (2020-02-20)

Changes:


	Added a framework for building tasks that extract, transform, and
load metadata from a Salesforce org. The initial set of tasks
include:


	add_standard_value_set_entries to add entries to a
StandardValueSet.


	add_page_layout_related_lists to add Related Lists to a Page
Layout.


	add_permission_set_perms to add field permissions and Apex
class accesses to a Permission Set.


	set_organization_wide_defaults to set the Organization-Wide
Defaults for one or more objects and wait for the operation to
complete.






	Added a new task insert_record to insert a single sObject record
via the REST API.


	The update_admin_profile task now accepts a profile_name option,
which defaults to Admin. This allows the task to be used to update
other Profiles. (The task class has been renamed to UpdateProfile,
but can still be used with the old name.)


	Updated to use Metadata API version 48.0 as the default for new
projects.


	Robot Framework: Improved documentation for the API keywords in the
Salesforce keyword library.




Issues closed:


	Fixed the cci error info command. It was failing to load the log
from the previous command.


	Fixed a bug where some error messages were not displayed correctly.


	Adjusted the Salesforce Robot Framework keyword library for better
stability in Chrome 80.


	Fixed a bug where using SFDXOrgTask to run an sfdx command on a
non-scratch org would break with “Must pass a username and/or OAuth
options when creating an AuthInfo instance.”


	Fixed a bug where an error while extracting the repository of a
cross-project source could leave behind an incomplete copy of the
codebase which would then be used by future commands.







3.6.0 (2020-02-06)

Changes:


	cci task info now has Command Syntax section and
improved formatting of option information.


	CumulusCI now displays a more helpful error message when it detects
a network connection issue. (#1460)


	We’ve added the option ignore_types to the
uninstall_packaged_incremental task to allow all
components of the specified metadata type to be ignored without
having to explicitly list each one.


	The  task now accepts a list of strings for
the file_pattern option.


	If the  task fails to delete some rows, this
is now reported as an error.


	Robot Framework: Added a new variable
\${SELENIUM_SPEED that is used to control the speed
at which selenium runs when the Open Test Browser
keyword is called.




Issues Closed:


	Fixed an issue where existing scratch orgs could sometimes not be
used in Windows.


	Fixed a regression where [flow info]{.title-ref} and [task
info]{.title-ref} commands could show an error [AttributeError:
‘NoneType’ object has no attribute ‘get_service’]{.title-ref}
when trying to load tasks or flows from a cross-project source.
(#1529)


	Fixed an issue where certain HTTP errors while running the bulk data
tasks were not reported.







3.5.4 (2020-01-30)

Changes:


	There is a new top level [cci error]{.title-ref} command for
interacting with errors in CumulusCI


	[cci gist]{.title-ref} is now [cci error gist]{.title-ref}


	[cci error info]{.title-ref} displays the last 30 lines of a
stacktrace from the previous [cci]{.title-ref} command run (if
present).


	Changed the prompt users receive when encountering errors in
[cci]{.title-ref}.




Issues Closed:


	Robot Framework: Reverted a change to the
[select_record_type]{.title-ref} keyword in the Salesforce library
to work in both Winter ‘20 and Spring ‘20







3.5.3 (2020-01-23)


	Added new features for running Python code (in a file or string)
without bringing up an interactive shell. You can now use
[–python]{.title-ref} and [–script]{.title-ref} arguments for
the [cci shell]{.title-ref} and [cci org shell]{.title-ref}
commands.


	Added support for up to two optional parameters in Apex anonymous
via token substitution.


	The [EnsureRecordTypes]{.title-ref} class is now exposed as
ensure_record_types and correctly supports the Case,
Lead, and Solution sObjects (in addition to other standard objects).


	Fixed a bug where the github_parent_pr_notes was attempting to post
comments on issues related to child pull request change notes.


	Fixed various Robot keyword issues that have been reported for
Spring ‘20.







3.5.2 (2020-01-21)

Issues closed:


	Fixed an issue where errors running the [cci gist]{.title-ref}
command prompt the user to use the [cci gist]{.title-ref} command.


	Removed reference to [os.uname()]{.title-ref} so that [cci
gist]{.title-ref} works on Windows.


	Fixed an issue where the dx_pull task causes an
infinite loop to occur on Windows.







3.5.1 (2020-01-15)

Issues closed:


	Fixed an issue that was preventing newlines in output.


	Don’t show the prompt to create a gist if the user aborts the
process.


	Avoid errors that can happen when trying to store the CumulusCI
encryption key in the system keychain using Python’s keyring
library, which can fail on some systems such as CI systems:


	We fixed a regression that caused CumulusCI to try to load the
keychain even for commands where it’s not used.


	We fixed a bug that caused CumulusCI to try to load the keychain
key even when using an unencrypted keychain such as the
EnvironmentProjectKeychain.






	Adjusted some keywords in the Salesforce library for Robot Framework
to handle changes in the Spring ‘20 release.







3.5.0 (2020-01-15)

Changes:


	The load_dataset task now accepts a bulk_mode option which can
be set to Serial to load batches serially instead of in parallel.


	CumulusCI now stores the logs from the last five executions under
~/.cumulusci/logs


	CumulusCI has a new top-level command: cci gist. This command
creates a secret GitHub gist which includes: The user’s current
CumulusCI version, current Python version, path to python binary,
sysname (e.g. Darwin), machine (e.g. x86_64), and the most recent
CumulusCI logfile (~/.cumulusci/logs/cci.log). The command outputs
a link to the created gist and opens a browser tab with the new
GitHub gist. This can be helpful for sharing information regarding
errors and issues encountered when working with cci. This feature
uses a users GitHub access token for creation of gists. If your
access token does not have the ‘gist (Create gists)’ scope this
command will result in a 404 error. For more info see:
https://cumulusci.readthedocs.io/en/latest/features.html#reporting-error-logs


	Changed UpdateAdminProfile so that it only deploys the modified
Admin profile. While it is necessary to retrieve profiles along
their associated metadata objects, we don’t need to do that for
deployments.


	Added options to the deploy task: check_only,
test_level, and specified_tests. Run cci task info deploy for
details. (#1066)







3.4.0 (2020-01-09)

Changes:


	Added activate_flow task which can be used to activate Flows and
Process Builder processes.


	Added two tasks, disable_tdtm_trigger_handlers and
restore_tdtm_trigger_handlers, which can be used to disable
trigger handlers for the table-driven trigger management feature of
NPSP and EDA.


	In the load_dataset task, added a way to avoid resetting the
Salesforce Id mapping tables by setting the reset_oids option to
False. This can be useful when running the task multiple times with
the same org.


	Added support for a few new metadata types from API versions 47 and
48 in the update_package_xml task.


	Added a way for Robot Framework libraries to register custom
locators for use by the selenium library.




Issues closed:


	Fixed a bug with freezing the load_data task for MetaDeploy where
it would use an invalid option for database_url.


	Fixed a bug in the github_release_notes task when processing a
pull request with no description. (#1444)


	Fixed inaccurate instructions shown at the end of
cci project init.







3.3.0 (2019-12-27)

Breaking changes:


	Removed tasks which are no longer in use: mrbelvedere_publish,
generate_apex_docs, and commit_apex_docs.




Changes:


	Updated Robot Framework Salesforce library to support the Spring
‘20 release.


	Added remove_metadata_xml_elements task which can be used to
remove specified XML elements from metadata files.


	Updated references to the NPSP repository to use its new name
instead of Cumulus.




Issues closed:


	Fixed the error message shown when a task config has a bad
class_path.


	Fixed a warning when running the command task in Python 3.8.


	When the CumulusCI Robot Framework library calls Salesforce APIs, it
will now automatically retry when it is safe to do so. It will also
avoid reusing old connections that might have been closed.


	Fixed the -o debug True option for the robot task.







3.2.0 (2019-12-11)

Breaking changes:


	We upgraded the SeleniumLibrary for Robot Framework from version
3.3.1 to version 4.1.0. This includes the removal of some deprecated
keywords. See the SeleniumLibrary
releases [https://github.com/robotframework/SeleniumLibrary/releases]
for links to detailed release notes.




Changes:


	The Persistent Orgs table shown by cci org list has been renamed
to Connected Orgs since scratch orgs will be shown here if they
were connected using cci org connect instead of created via the
Salesforce CLI. This table now shows the org’s expiration date, if
known.


	Improvements to the retrieve_changes task:


	The task now retrieves only the components that actually
changed, not all components listed in package.xml in the
target directory.


	Changes can now be retrieved into folders in DX source format.
The target directory defaults to src if the project is using
mdapi format or the default entry in packageDirectories in
sfdx-project.json if the project is using sfdx format.
(Namespace tokenization is not supported in DX format, since
there isn’t currently a way to deploy DX format source
including namespace tokens.)






	Added a task, load_custom_settings, to upload Custom Settings
defined in YAML into a target org. See
https://cumulusci.readthedocs.io/en/latest/bulk_data.html#custom-settings
for more info.




Issues closed:


	Fixed an issue with how the package upload task logs Apex test
failures to make sure they show up in MetaCI.


	Fixed KeyError: createdDate error when trying to get scratch org
info.


	A rare issue where CumulusCI could fail to load the symbol table for
a failed Apex test class is now caught and reported.


	CumulusCI now displays the underlying error if it encounters a
problem with storing its encryption key in the system keychain.







3.1.2 (2019-11-20)

Breaking changes:


	We changed the default path for the mapping file created by the
generate_dataset_mapping task to datasets/mapping.yml so that it
matches the defaults for extract_dataset and load_dataset


	We changed the extract_dataset and load_dataset tasks to default
to storing data in an SQL file, datasets/sample.sql, instead of a
binary SQLite database file.




Changes:


	run_tests can now detect and optionally retry two classes of
concurrency issues with Apex unit tests. run_tests should always
report an accurate total of test methods run, in parallel or serial
mode.


	Added the task generate_data_dictionary. This task indexes the
fields and objects created in each GitHub release for the project
and generates a data dictionary in CSV format.


	Added a devhub service. This can be used to switch a project to a
non-default sfdx Dev Hub using
cci service connect devhub --project


	Added a predefined qa scratch org. It uses the same scratch org
definition file as the dev org, but makes it easier to spin up a
second org for QA purposes without needing to first create it using
cci org scratch.


	The database_url option for the extract_dataset and
load_dataset tasks is no longer required. Either database_url or
sql_path must be specified. If both are specified, the sql_path
will be ignored.


	Developers can now directly execute CumulusCI from the Python
command line using python -m cumulusci or
python cumulusci/__main__.py




Issues closed:


	A problem with how run_tests performed Apex test retries when
retry_always is set to True has been corrected.







3.1.1 (2019-11-13)

New features:


	After connecting an org with cci org connect, the browser now
shows the message “Congratulations! Your authentication
succeeded.” instead of “OK”


	External GitHub sources can now specify release: latest,
release: latest_beta, or release: previous instead of a commit,
branch, or tag.


	The execute_anon task has been revised to detect when a gack
occurred during execution.




Issues closed:


	When importing a scratch org from sfdx using cci org import, the
org’s days is now set correctly from the org’s actual expiration
date. (#1101)


	The package API version from cumulusci.yml is now validated to
make sure it’s in the “XX.0” format expected by the API. (#1134)


	Fixed an error deploying new setting objects using the
org_settings task in Winter ‘20.


	Fixed a bug in processing preflight check tasks for MetaDeploy.


	Fixed path handling in the update_admin_profile task when run in a
cross-project flow.







3.1.0 (2019-11-01)

Breaking changes:


	The metadeploy_publish task now requires setting -o publish True
in order to automatically set the Version’s is_listed flag to True.
(This is backwards incompatible in order to provide a safer
default.)




New features:


	Python 3.8 is now officially supported.


	Flows can now include tasks or flows from a different project. See
Using Tasks and Flows from a Different
Project [https://cumulusci.readthedocs.io/en/latest/features.html]
for details.


	In the metadeploy_publish task it is now possible to specify a
commit hash with -o commit [sha], instead of a tag. This is useful
while MetaDeploy plans are in development.


	Bulk data:


	Added support for mapping Record Types between orgs (by
Developer Name) during bulk data extract and load.


	Added support for Record Type mapping in the
generate_dataset_mapping task.


	Added new
documentation [https://cumulusci.readthedocs.io/en/latest/bulk_data.html]
for bulk data tasks.






	Robot Framework:


	The sample create_contact.robot test that is created when
initializing a new project with cci project init now makes use
of page objects.


	The page objects library has two new keywords, wait for modal
and wait for page object, which wait for a new page object to
appear.


	cumulusci.robotframework.utils now has a decorator named
capture_screenshot_on_error which can be used to automatically
capture a screenshot when a keyword fails.


	Prior to this change, Go to page Detail Contact required you
to use a keyword argument for the object id (eg:
Go to page Detail Contact object_id=${object_id}). You can
now specify the object id as a positional parameter (eg:
Go to page Detail Contact ${object_id}).






	OrgConfig objects now have a latest_api_version property which
can be used to check what Salesforce API version is available.




Issues closed:


	Updated the scratch org definition files generated by
cci project init to the new recommended format for org settings.
Thanks to @umeditor for the fix.


	The create_unmanaged_ee_src task (part of the unmanaged_ee flow)
has been revised to remove the Protected setting on Custom Objects,
to ensure that projects using this setting can be deployed to an
Enterprise Edition org.


	The Salesforce REST API client used by many tasks will now
automatically retry requests on certain connection and HTTP errors.


	Fixed an issue where posts to the Metadata API could reuse an
existing connection and get a connection reset error if Salesforce
had closed the connection.


	Disabled use of PyOpenSSL by the Python requests library, since it
is no longer needed in the versions of Python we support.







3.0.2 (2019-10-17)

Issues closed:


	Fixed a bug in deploying email templates and dashboards that was
introduced in 3.0.1.


	Removed broken config_qa flow from the cci project init
template.







3.0.1 (2019-10-16)

New features:


	Added support for new metadata types when generating package.xml
from a directory of metadata using the update_package_xml task.


	The ci_feature flow now supports generating change notes for a
parent feature branch’s pull request from the notes on child pull
requests. The parent pull request description will be overwritten
with the new notes after a child branch is merged to the parent if
the parent pull request has a special label, Build Change Notes.


	When running Apex tests with the run_tasks task, if there is a
single remaining class being run, its name will be logged.


	Apex test failures that happen while uploading a package are now
logged.


	In the robot_libdoc task, wildcards can now be used in the path
option.


	Added an org_settings task which can deploy scratch org settings
from a scratch org definition file.




Issues closed:


	Added a workaround for an issue where refreshing the access token
for a sandbox or scratch org could fail if the user’s credentials
were new and not fully propagated.







3.0.0 (2019-09-30)

Breaking change:


	CumulusCI 3.0.0 removes support for Python 2 (which will reach end
of life at the end of 2019). If you’re still running Python 2 you
can use an older version of CumulusCI, but we recommend upgrading to
Python 3. See our installation
instructions [https://cumulusci.readthedocs.io/en/latest/install.html]
for your platform.







2.5.9 (2019-09-26)

New features:


	Added a Domain column to the list of scratch orgs in cci org list.
(thanks @bethbrains)


	Tasks related to Salesforce Communities (thanks @MatthewBlanski)

: - New list_community_templates task - New list_communities task - New publish_community task - The create_community task can now be used to create a
community with no URL prefix, as long as one does not
already exist.



	Robot Framework:

: -

    Added keywords for generating a collection of sObjects according to a template:

    :   -   `Generate Test Data`
        -   `Salesforce Collection Insert`
        -   `Salesforce Collection Update`

-

    Changes to Page Objects:

    :   -   More than one page object can be loaded at once.
            Once loaded, the keywords of a page object remain
            visible in the suite. Robot will give priority to
            keywords in the reverse order in which they were
            imported.
        -   There is a new keyword, `Log Current Page Object`,
            which can be useful to see information about the
            most recently loaded page object.
        -   There is a new keyword, `Get Page Object`, which
            will return the robot library for a given page
            object. This can be used in other keywords to access
            keywords from another page object if necessary.
        -   The `Go To Page` keyword will now automatically load
            the page object for the given page.

-   Added a basic debugger for Robot tests. It can be enabled
    using the `-o debug True` option to the robot task.







	Added support for deploying new metadata types
ProfilePasswordPolicy and ProfileSessionSetting.




Issues closed:


	Fixed a bug where the batch_apex_wait task would sometimes fail to
conclude that the batch was complete.


	Fixed a bug in rendering tables in Python 2.







2.5.8 (2019-09-13)

New features:


	LoadData now supports the key action: update to perform a Bulk
API update job


	LoadData now supports an after: <step name> on a lookup entry to
defer updating that lookup until a dependent sObject step is
completed.


	GenerateMapping now handles self-lookups and reference cycles by
generating after: markers wherever needed.




Issues closed:


	Patch selenium to convert executeScript to executeAsyncScript.
This is a workaround for the executeScript issue in chromedriver 77.


	A small issue in QueryData affecting mappings using
oid_as_pk: False has been fixed.







2.5.7 (2019-09-03)

Breaking changes:


	The retries, retry_interval, and retry_interval_add options
have been removed from the run_tests task. These were misleading
as they did not actually retry failing tests.




New features:


	The run_tests task now supports a retry_failures parameter. This
is a list of regular expressions to match against each unit test
failure’s message and stack trace; if all failing tests match, the
failing tests will be retried serially. Set retry_always to True
to trigger this behavior when any failure matches.


	There is now a default CumulusCI global connected app that can be
used to connect to persistent orgs (assuming you know the
credentials) without creating a new connected app. It’s still
possible to configure a custom connected app using
cci service connect connected_app if more control over the
connected app settings is needed.


	When CumulusCI is being run in a non-interactive context it can now
obtain an access token for a persistent org using a JWT instead of a
refresh token. This approach is used if the SFDX_CLIENT_ID and
SFDX_HUB_KEY environment variables are set. This makes it easier to
manage persistent org connections in the context of a hosted service
because it’s possible to replace the connected app’s certificate
without needing to obtain new refresh tokens for each org.




Issues closed:


	Fixed a bug where showing the summary of flow steps would break with
sub-steps in MetaDeploy.


	Fixed a bug in the caching of preflight task results in MetaDeploy.







2.5.6 (2019-08-15)

New features:


	We’ve changed how the output of some commands are displayed in
tables. For users that prefer simpler style tables we’ve added a
--plain option to approximate the previous behavior. To
permanently set this option, add this in
~/.cumulusci/cumulusci.yml:

cli:
    plain_output: True







	Added additional info to the cci version command, including the
Python version, an upgrade check, and a warning on Python 2.


	Improved the summary of flow steps that is shown at the start of
running a flow.


	The github_release_notes task now has an include_empty option to
include links to pull requests that have no release notes. This is
enabled by default when this task is called as part of the
release_beta flow.


	Robot Framework:


	Added locators file to support the Winter ‘20 release of
Salesforce.


	New robot_lint task to check for common problems in Robot
Framework test suites.


	The Open Test Browser keyword will now log details about the
browser.


	Added a new keyword to the CumulusCI library,
Get Community Info. It can be used to get information about a
Community by name via the Salesforce API.








Issues closed:


	Added workarounds for some intermittent 401 errors when
authenticating to the GitHub API as a GitHub App.


	cci org info shouldn’t show traceback if the org isn’t found
(#1023)







2.5.5 (2019-07-31)

New features:


	Add the cci org shell command, which opens a Python shell
pre-populated with a simple_salesforce session on the selected org
(as sf).


	The cci flow info command now shows nested subflows.


	Added the create_community task allowing for API-based Community
creation.


	Added the generate_dataset_mapping task to generate a Bulk Data
mapping file for a package.


	CumulusCI can now authenticate for GitHub API calls as either a user
or an app. The latter is for use when CumulusCI is used as part of a
hosted service.


	The OrgConfig object now provides access to the Organization
SObject data via the organization_sobject attribute.




Issues closed:


	The install_regression flow now upgrades to the latest beta from
the most recent final release instead of from the previous final
release.


	Made sure that an errorMessage returned from a metadata API deploy
will be reported.


	The load_dataset task will now stop with an exception if any
records fail during the load operation.







2.5.4 (2019-07-03)


	Updated the default API version for new projects to 46.0


	Fixed a bug in reporting scratch org creation errors encountered
while running a flow.


	Fixed the snapshot_changes and list_changes tasks to avoid
breaking when the last revision number of a component is null.







2.5.3 (2019-06-24)

Breaking changes:


	Added two new options to the UpdateDependencies task:


	allow_newer: If the org already has a newer release, use it.
Defaults to True.


	allow_uninstalls: Allow uninstalling a beta release or newer
final release if needed in order to install the requested
version. Defaults to False.




These defaults are a change from prior behavior since uninstalling
packages is not commonly needed when working with scratch orgs, and
it is potentially destructive.





New features:


	Added support for defining and evaluating preflight checks for
MetaDeploy plans.


	The tasks for bulk data extract and load are now configured by
default as extract_data and load_data.


	Updated the project template created by cci project init:


	Added .gitignore, README.md, and a template for GitHub pull
requests


	Added an option to store metadata in DX source format


	Added a sample mapping.yml for the bulk data tasks


	Specify the currently installed CumulusCI version as the
project’s minimum_cumulusci_version


	Check to make sure the project name only contains supported
characters






	The robot_libdoc task can now generate documentation for Robot
Framework page objects.




Issues fixed:


	Colors in terminal output are now displayed correctly in Windows.
(#813)


	cci no longer prints tracebacks when a flow or task is not found.
Additionally, it will suggest a name if a close enough match can be
found. (#960)


	Fixed UnicodeDecodeError when reading output from subprocesses if
the console encoding is different from Python’s preferred file
encoding.


	Fixes related to source tracking:


	Track the max revision retrieved for each component instead of
the overall max revision. This way components can be retrieved
in stages into different paths.


	If snapshot_changes doesn’t find any changes, wait 5 seconds
and try again. There can be a delay after a deployment before
source tracking is updated.











2.5.2 (2019-06-10)

Issues fixed:


	When generating package.xml, translate ___NAMESPACE___ tokens in
filenames into %%%NAMESPACE%%% tokens in package.xml (#1104).


	Avoid extraneous output when --json output was requested (#1103).


	Display OS notification when a task or flow completes even if it
failed.


	Robot Framework: Added logic to retry the initial page load if it is
not loading successfully.


	Internal API change: Errors while processing a response from the
Metadata API are now raised as MetadataParseError.







2.5.1 (2019-05-31)

Issues fixed:


	Fixed cci service connect when run outside of a directory
containing a CumulusCI project.







2.5.0 (2019-05-25)

Breaking changes:


	We reorganized the flows for setting up a package for regression
testing for better symmetry with other flows. If you were running
the install_regression flow before, you now probably want
regression_org.

Details: The install_regression flow now installs the package
without configuring it. There is a new config_regression
flow to configure the package (it defaults to calling
config_managed) and a regression_org flow that includes both
install_regression and config_regression.





New features:


	CumulusCI now has experimental support for deploying projects in DX
source
format [https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_file_format.htm].
To enable this, set source_format: sfdx in the project section of
cumulusci.yml. CumulusCI will deploy DX-format projects to scratch
orgs using sfdx force:source:push and to other orgs using the
Metadata API (by converting to metadata source format in a temporary
directory).


	Setting a default org in CumulusCI (using cci org default or the
--default flag when creating a scratch org) will now also update
the sfdx defaultusername. (#868)


	When connecting to GitHub using cci service connect github,
CumulusCI will now check to make sure the credentials are valid
before saving them.


	Robot Framework:


	Added a framework for creating “page object” classes to
contain keywords related to a particular page or component.


	The robot task now takes a name option to control the name
of the robot suite in output.


	Updates to the keyword Open Test Browser:


	It allows you to open more than one browser in a single test
case. (#1068)


	It sets the default size for the browser window to
1280x1024.


	Added a new keyword argument size to override the default
size.


	Added a new keyword argument alias to let you assign an
alias to multiple browser windows.












Issues fixed:


	Robot Framework: Fixed a bug where the Delete Session Records
keyword would skip deleting some records. (#973)


	If Salesforce returns an error response while refreshing an OAuth
token, CumulusCI will now show the response instead of just the HTTP
status code.


	Fixed a bug in reporting errors from the Metadata API if the
response contains componentFailures with no problem or
problemType.







2.4.4 (2019-05-09)

New features:


	Added tasks list_changes and retrieve_changes which interact
with source tracking in scratch orgs to handle retrieving changed
metadata as Metadata API format source.


	Added task EnsureRecordTypes to generate a Record Type and
optional Business Process for a specific sObject and deploy the
metadata, if the object does not already have Record Types.


	The update_admin_profile task now uses Python string formatting on
the package.xml file used for retrieve. This allows injection of
namespace prefixes using {managed} and {namespaced_org}.




Issues fixed:


	If CumulusCI gets a connection error while trying to call the
Salesforce Metadata API, it will now retry several times before
giving up.


	The GitHub release notes parser now recognizes Issues Closed if they
are linked in Markdown format.


	Robot Framework: Fixed a locator used by the
Select App Launcher App keyword to work in Summer ‘19.


	The cci project init command now uses an updated repository URL
when extending EDA.







2.4.3 (2019-04-26)


	Allow configuration of the email address assigned to scratch org
users, with the order of priority being (1) any adminEmail key in
the scratch org definition; (2) the email_address property on the
scratch org configuration in cumulusci.yml; (3) the user.email
configuration property in Git.


	CumulusCI can now handle building static resource bundles
(*.resource) while deploying using the Metadata API. To use this
option, specify the static_resource_path option for the deploy
task. Any subdirectory in this path will be turned into a resource
file and added to the package during deployment. There must be a
corresponding *.resource-meta.xml file for each static resource
bundle.


	Bulk data tasks: Fixed a bug that added extra underscores to field
names when processing lookups.


	Robot Framework: The Salesforce library now has the ability to
switch between different sets of locators based on the Salesforce
version, and thanks to it we’ve fixed the robot so it can click on
modal buttons in the Summer ‘19 release.


	The cci project init command now generates projects with a
different preferred structure for Robot Framework tests and
resources, with everything inside the robot directory. Existing
projects with tests in the tests directory should continue to
work.







2.4.2 (2019-04-22)


	The purgeOnDelete flag for the deploy task will now
automatically be set to false when deploying metadata to production
orgs (previously deployment would fail on production orgs if this
flag was true).


	The installation documentation now recommends using pipx to
install CumulusCI on Windows, so that you don’t have to set up a
virtualenv manually.







2.4.1 (2019-04-09)

Changes:


	Updated the default Salesforce Metadata API version to 45.0


	The scratch org definition files generated by cci project init now
use orgPreferenceSettings instead of the deprecated
orgPreferences.


	The metadeploy_publish task now defaults to describing tasks based
on Deploy as “metadata” steps instead of “other”.




Issues Fixed:


	Fixed a couple problems with generating passwords for new scratch
orgs:


	A project’s predefined scratch org configs now default to
set_password: True (which was already the case for orgs
created explicitly using cci org scratch).


	A scratch org config’s set_password flag is now retained when
recreating an expired org. (Fixes ##670)






	Fixed the logic for finding the most recent GitHub release so that
it now only considers tags that start with the project’s git
prefix_release.


	Fixed the install_prod_no_config flow. The deploy_post task was
not injecting namespace tokens correctly.


	Fixed the connected_app task to work with version 7 of the
sfdx CLI. (Fixes ##1013)


	Robot Framework: Fixed the Populate Field keyword to work around
intermittent problems clearing existing field values.







2.4.0 (2019-03-18)

Critical changes:


	If you are publishing installation plans to MetaDeploy, there have
been some significant changes:



	Plan options are now read from a new plans section of
cumulusci.yml instead of from task options. This means that
a single run of the task can now handle publishing multiple
plans, and there is now a generic metadeploy_publish task
which can be used instead of setting up different tasks for
each project.


	Plan steps are now defined inline in the plan configuration
rather than by naming a flow. This makes it easier to
configure a plan that is like an existing flow with one or two
adjustments.


	There is now a way to customize MetaDeploy step settings such
as name and is_required on a step-by-step basis, using
ui_options in the plan config.


	The task will now find or create a PlanTemplate as
necessary, matching existing PlanTemplates on the product and
plan name. This means the plan config no longer needs to
reference a plan template by id, which makes it easier to
publish to multiple instances of MetaDeploy.









	The install_upgrade flow was renamed to install_regression to
better reflect the use case it is focused on. There are also a few
updates to what it does:



	It will now install the latest beta release of managed
packages instead of the latest final release.


	It now runs the config_managed flow after upgrading the
managed package, so that it will work if this flow has
references to newly added components.











Changes:


	Added support for deploying Lightning Web Components.


	Fixed the bulk data load task to handle null values in a datetime
column.


	The ci_master flow now explicitly avoids trying to
install beta releases of dependencies (since it’s meant for use
with non-scratch orgs and we block installing betas there since they
can’t be upgraded).







2.3.4 (2019-03-06)


	Added a new flow, install_upgrade, which can be used for testing
package upgrades. It installs and configures the previous
release of the package, then installs the latest release.


	Fixed an error when using cci org info --json (fixes ##1013).







2.3.3 (2019-02-28)


	Fixed a bug where flow options specified on the command line were
not passed to tasks correctly.


	cci service connect now shows a more helpful error message if you
call it with a service name that CumulusCI doesn’t know about.
Fixes ##752.


	Deleted scratch orgs will no longer show the number of days since
they were created in cci org list. Thanks to @21aslade for the
fix.


	Updates to the MetaDeploy publish task:


	It is now possible to publish a new plan for an existing
version.


	It is now possible to specify the AllowedList to which a plan is
visible.






	Updates to Robot Framework support:


	Fixed a bug in the robot task: it now accepts an option called
test rather than tests, since the latter was ignored by
Robot Framework.


	Fixed some stability problems with the Populate Field keyword.


	The robot_libdoc task has been replaced with a new task of the
same name that can generate a single HTML document for multiple
keyword files by passing a comma-separated list of files to the
path option.











2.3.2 (2019-02-19)


	Mapping enhancements for bulk QueryData and LoadData tasks


	The mapping yaml file no longer requires using Id: sf_id as a
field mapping. If not provided, QueryData and LoadData will
use local database ids instead of Saleforce OIDs for storing
lookup relationships. Previous mappings which specify the
Id: sf_id mapping will continue to work as before using the
Salesforce OID as the mapping value.


	The mapping yaml file’s lookups: section now handles defaults
to allow simpler lookup mappings. The only key required is now
table. If the key_field is provided it will be used.






	The sql_path option on QueryData can be used to provide the file
path where a SQL script should be written. If this option is used, a
sqlite in-memory database is used and discarded. This is useful for
storing data sets in a Github repository and allowing diffs of the
dataset to be visible when reviewing Pull Requests


	When using this option, it is best to make sure your mapping
yaml file does not provide a field mapping for the Id field.
This will help avoid merge conflicts if querying data from
different orgs such as scratch orgs.






	The [sql_path]{.title-ref} option on LoadData can be used to
provide the file path where a SQL script file should be read and
used to load an in-memory sqlite database for the load operation.







2.3.1 (2019-02-15)


	Fixed a bug that caused the cci command to check for a newer
version on every run, rather than occasionally. Also we now detect
whether CumulusCI was installed using Homebrew and recommend an
upgrade command accordingly.


	CumulusCI now automatically generates its own keychain key and
stores it in the system keychain (using the Python
[keyring]{.title-ref} library). This means that it is no longer
necessary to specify a CUMULUSCI_KEY as an environment variable.
(However, the environment variable will still be preferred if it is
there, and it will be migrated to the system keychain.)


	New task connected_app makes it easier to deploy and configure the
Connected App needed for CumulusCI’s keychain to work with
persistent orgs. The connected app is deployed using sfdx to an
org in the sfdx keychain and defaults to the
defaultdevhubusername.


	The robot task gives a more helpful error message if you forget to
specify an org.


	Updates to the task for publishing to MetaDeploy:


	Dependency installation steps are now named using the package
name and version.


	The task options have been revised to match changes in the
MetaDeploy API. An optional plan_template_id is now accepted.
preflight_message is now named preflight_message_additional
and is optional. post_install_message is now named
post_install_message_additional and is optional.











2.3.0 (2019-02-04)

Changes:


	When installing a managed package dependency, pre & post metadata
bundles are now fetched from the git commit corresponding to the
most recent release of the managed package, instead of master.


	Improvements to the task for publishing a release to MetaDeploy:


	It can now publish a tag even if it’s a different commit than
what is currently checked out in the working directory.


	It now pins managed deployments of metadata bundles to the git
commit corresponding to the most recent release of the managed
package.








Issues Closed:


	##962: cumulusci.utils.findReplace uses wrong file encoding in
Python 3


	##967: Allow cci service commands to be run from outside a project
repository







2.3.0b1 (2019-01-28)

Breaking Changes:


	We refactored the code for running flows. The full list of steps to
run is now calculated from nested flow configuration when the flow
is initialized instead of during runtime. Your existing flows should
continue to run as before, but if you’re interacting with CumulusCI
at the Python API level, you’ll need to use the FlowCoordinator
instead of BaseFlow.


	Tasks are now expected to have no side effects when they are
instantiated. If tasks need to set up resources, do that in
_init_task instead of __init__ or _init_options to make sure
it doesn’t happen until the task is actually being run.




Changes:


	There is now a dev_org_beta_deps flow which sets up an org in the
same way as dev_org, but installs the latest beta versions of
managed package dependencies.


	The github_release task now records the release dependencies as
JSON in the release’s tag message.


	Looking up the latest release from GitHub is now done using a single
HTTP request rather than listing all releases.


	We added S-Controls to the list of metadata types that the
uninstall_packaged_incremental task will delete.


	Salesforce Robot Framework library: The Get Current Record Id
keyword now parses the Id correctly when prefixed with %2F, which
apparently happens.


	The push_failure_report task now avoids an error when querying for
info about lots of subscriber orgs.




Issues Closed:


	##911: Fix UnicodeDecodeError when parsing XML retrieved from the
Metadata API.







2.2.6 (2019-01-03)

Changes:


	Added support for more metadata types: Group, SharingSet,
SharingCriteriaRule, SharingOwnerRule, and SharingTerritoryRule.


	Release process: We now have tools in place to release cumulusci so
that it can be installed using Homebrew or Linuxbrew.




Issues Closed:


	Fixed an issue where tasks using the Salesforce REST API could build
a wrong URL with an extra slash after the instance URL.


	Fixed an issue where overriding a flow step to set flow: None did
not work.


	Robot Framework: Added an automatic retry to work around an issue
with an intermittent ConnectionResetError when connecting to
headless Chrome in Python 3.







2.2.5 (2018-12-26)


	The install_managed and install_managed_beta tasks now take
optional activateRSS and password options. activateRSS is set
to true by default so that any active Remote Site Settings in the
package will remain active when installed.


	When running a task with the --debug flag, HTTP requests are now
logged.


	Robot Framework:


	Fix issue where “Get Current Record Id” could accidentally
match the object name instead of the record Id.


	Fix issue where “Load Related List” would fail to scroll down
to the list.


	Fix issue where errors deleting records during test teardown
would cause a hidden test failure.











2.2.4 (2018-12-17)

Changes:


	Bulk query task:


	Fixed an issue with querying data filtered by record type
(#904).


	Fixed an issue where the optimized approach for loading data
into PostgreSQL was not used.


	The task will now prevent you from accidentally overwriting
existing data by exiting with an error if the table already
exists.






	The deploy task now logs the size of the zip payload in bytes.


	Fixed a TypeError in the commit_apex_docs task (#901).


	Robot Framework:


	Add location strategies for locating elements by text and by
title.











2.2.3 (2018-12-07)

Changes:


	Improved error messages when scratch org creation failed and when a
service is not configured.


	Robot Framework: Limit how long the “Load Related List” keyword
will wait.







2.2.2 (2018-11-27)

Changes:


	Improved error handling during scratch org creation:


	Capture and display stderr output from SFDX (issue ##413).


	Avoid infinite recursion if username wasn’t found in output
from SFDX.






	Robot Framework: Increased the timeout for initial loading of the
browser.







2.2.1 (2018-11-21)

Oops, an update in CumulusCI 2.2.0 ended up breaking the
update_dependencies task! Now fixed.




2.2.0 (2018-11-21)

Changes:


	Tasks can now be placed in groups for the task list! Just specify a
group when defining the task in YAML.


	By popular request, there is now an org import command to import
an org from the SFDX keychain to the CumulusCI keychain. It takes
two arguments: the SFDX username or alias, and the org name.


	Robot Framework:


	The Populate Field keyword now clears an existing value using
keystrokes to make sure that change events are fired.


	Added a Get Namespace Prefix keyword to the CumulusCI library
to get the namespace prefix for a package.


	Fixed a bug that broke opening a browser after using the
Run Task keyword.






	Documentation updates:


	The readme now includes a link to the full documentation.


	The instructions for installing CumulusCI on macOS have been
simplified and now recommend using the official Python installer
from python.org instead of Homebrew. (Homebrew should still work
fine, but is no longer necessary.) We also now suggest creating
a virtualenv using venv rather than pyenv since the former is
included with Python. It’s fine to continue using pyenv if you
want.


	Give more useful links for how to set up SFDX.


	Updated robot library docs.






	Internal refactoring:


	Removed dependency on HiYaPyCo for YAML loading, which would not
report which file failed to load in the event of a YAML parse
error.


	We now consistently load YAML in the same manner throughout the
entire library, which will work with all supported Python
versions.


	Simplified the Python API for setting up a CumulusCI runtime.
Begone, YamlGlobalConfig and YamlProjectConfig. Our Python API
is not yet documented, but we’re working on it. In the
meantime, if you were relying on running CCI from within Python,
you can now just use BaseGlobalConfig (and its
get_project_config member) to bootstrap CCI.


	BaseProjectConfig has shrugged off some methods that just
delegated to the keychain.


	BaseGlobalConfig has shrugged off some unimplemented methods,
and BaseGlobalConfig.get_project_config is now deprecated in
favor of using a runtime.


	Introducing… 🥁CumulusCIRuntime! In order to alleviate the
complexities of getting CumulusCI tasks/flows running from
within a Python application, CumulusCIRuntime encapsulates a lot
of the details and wiring between Keychain, GlobalConfig, and
ProjectConfig. Usage docs are barely included.


	CliConfig has been renamed to CliRuntime and now inherits from
CumulusCIRuntime. It is still accessible as CliConfig.


	Upgraded dependencies.






	Contributor improvement: The contributor docs now explain how to
install pre-commit hooks to make sure our linters have run before
you commit.




Issues Closed:


	##674: cci org import <username> <org_name>


	##877: CumulusCI should be able to connect to any DX alias and/or
understand dx auth files







2.1.2 (2018-10-29)

Oops, we broke a few things! This is a bugfix release to fix a few
issues found during the Salesforce.org Open Source Community Sprint last
week.

Issues Closed:


	##858 Dataload bulk query fails to load data into the sqlite db


	##862 CLI options fail on robot task in 2.1.1


	##864 Deploying a -meta.xml file with non-ASCII characters breaks in
Python 2







2.1.1 (2018-10-23)

Changes:


	Our robotframework library for Salesforce got a number of
improvements:


	New keywords:


	Click Header Field Link: Clicks a link in a record header


	Load Related List: Scrolls to a related list and waits for
it to load


	Click Related List Button: Clicks a button in the header
of a related list


	Click Related Item Link: Clicks the main link for an item
in a related list


	Click Related Item Popup Link: Clicks a link in the popup
menu for an item in a related list






	Updated to robotframework-seleniumlibrary 3.2.0 which includes
a Scroll Element Into View keyword.


	Wait Until Loading Is Complete now waits for the main body of
the page to render


	Populate Lookup Field now tries several times in case there’s
an indexing delay


	Added a -o verbose True option to the robot task which logs
each keyword as it runs.


	We now ignore errors while running the script that waits for
XHRs to complete (it can fail if the page reloads before the
script finishes).






	Popup notifications upon completion of a flow or task now work on
Linux too, if you have the notify-send command from libnotify. On
Ubuntu, install the notify-osd package.




Issues Closed:


	##827 Bulk data load breaks in Python 2


	##832 pip install cumulusci gets the wrong version of urllib3







2.1.1b1 (2018-10-17)


	uninstall_packaged_incremental task: Added ignore option to
specify components to skip trying to delete even if they are present
in the org but not in the local source.







2.1.0 (2018-10-16)


	Fixed the cci project init command, which was failing because it
wanted the project to already exist! Fixes ##816. In addition, other
commands will now function without an active project or keychain
when it possible to do so. (For example, try cci version which now
works when you’re not in a project directory.)


	update_dependencies task:

: - Added support for installing private github repositories as
dependencies. Thanks to Anthony Backhouse (@1handclapping)
for the patch. Fixes ##793 - Added a dependencies option to override the project
dependencies.



	execute_apex task:

: - Print more useful error messages when there are Apex
exceptions.



	robot task:

: - Our logic for automatically retrying failed selenium
commands has been encapsulated into the
cumulusci.robotframework.utils.selenium_retry decorator
which can be applied to a robot library class for increased
stability. - There is now an option to pause and enter the Python
debugger after a keyword fails. Run with -o pdb True. - Revised keywords and locators to support the Winter ‘19
release of Salesforce and improve stability. - The Salesforce.robot file now includes the
OperatingSystem and XML libraries from Robot Framework
by default. These libraries are helpful in building
integration tests such as modifying and deploying a
PageLayout to include a field needed in Suite Setup of an
integration test.



	Revised installation instructions for Windows. Thanks Matthew
Blanski (@Auchtor).


	Internal change: Use a thread-local variable instead of a global to
track the current running task.







2.1.0b1 (2018-10-05)


	It’s happening! Hot on the heels of the last release, CumulusCI is
making the jump to the modern era by adding support for Python
3! (Specifically, Python 3.6 and 3.7.) Don’t worry, we’ll also
continue to support Python 2 for the time being. Because this is a
bit more wide-reaching change than normal, we’re releasing a beta
first. To install the beta you’ll need to explicitly request its
version: pip install cumulusci==2.1.0b1. If you already have
CumulusCI, after the update it will continue to run under your
Python 2 interpreter. If you want to switch to the Python 3
interpreter (which is not yet required), we recommend deleting your
Python virtualenv and starting over with the instructions in the
tutorial [https://cumulusci.readthedocs.io/en/latest/tutorial.html].
If you want to keep your Python 2-based virtualenv around just in
case, follow those instructions but name the new virtualenv
cci-py3 instead of cci.


	There are also some big changes to the bulk data tasks. Did you
know CumulusCI has bulk data tasks? They are not configured by
default, because we need to finish documenting them. But we’ll list
the changes in case someone is already relying on them:


	Fixed connection resets by downloading an entire result file
before processing.


	Improved performance by processing batches in parallel, avoiding
the SQLAlchemy ORM, storing inserted Ids in separate tables, and
doing lookups using SQL joins rather than a separate query for
each row.


	If you’re using a postgres database for local storage,
performance gets even better by taking advantage of postgres’
COPY command to load CSV directly.


	Added a hardDelete option for bulk deletes.


	Added a start_step option for bulk loads which can be used to
resume loading after an error.






	The push_failure_report task will now by default hide failures
that occurred due to the “Package Uninstalled” or “Salesforce
Subscription Expired” errors, which are generally benign.


	Fixed the check for newer CumulusCI versions to work around an issue
with old setuptools.


	Contributor change: We switched CumulusCI’s own tests to run using
pytest.


	Internal change: We switched to the cryptography library for
handling keychain encryption.







2.0.13 (2018-10-02)


	Happy Spooky October! It’s unlucky release 2.0.13, with some
scary-cool improvements. Just to show you how ramped up our RelEng
team is now, this release had TWENTY THREE pull requests in 12 days!
From all four of your friendly SFDO Release Engineering committers.
Thanks so much for continuing to use CCI for all your Salesforce
automation needs.


	NEW FLOW: ci_beta_dependencies installs the latest beta of project
dependencies and run tests. Includes task error when running against
non-scratch orgs.


	NEW TASK: ReportPushFailures pulls a list of Package Push Upgrade
Request failures after a push attempt, including grouping by
important factors.


	Issue a terminal “Bell” sound and attempt to display a macOS
notification when a commandline task or flow completes.


	Cleaned up python exception and error handling across the board, so
that we can provide you, the user, with only the most relevant
information. Try using CCI without setting your CUMULUSCI_KEY and
see a simplified error message.


	Fixed the utils for processing namespaces in package zip files to
handle non-ASCII characters


	The CONTRIBUTING.rst docs and Makefile have been updated to show how
we release updates of CCI.


	Skip beta releases when checking for a newer cumulusci version


	When using the strip_namespace option on deployments, we now log
which files had changes made before deploying.


	Going Out: the SFDXDeploy and SFDXJsonPollingTasks have been
removed, as they didn’t work.


	Going Out: Use the safe_load() method when loading YAML instead of
the naive load(). If you relied on executing code in your CCI YAML
file parsing, that will no longer work.







2.0.12 (2018-09-20)


	Fixed apexdoc URL


	Fixed update_admin_profile to set any existing record
type defaults to false before setting new defaults.


	Fixed deployment of -meta.xml files containing non-ASCII characters.


	Updated the robot selector for “Click Modal Button” to work for
modals opened by a Quick Action.







2.0.11 (2018-09-14)


	update_admin_profile now uses xml parsing instead of
string replacement for more targeted editing of Admin.profile to fix
issues with deploying record types via dependencies


	Projects can declare a dependency on a minimum version of cumulusci
by specifying [minimum_cumulusci_version]{.title-ref} in
cumulusci.yml







2.0.10 (2018-09-13)


	update_admin_profile task now sets application and tab
visibility and supports setting record type visibility and default
via the new  task option


	Restructured exceptions to include two new parent exceptions useful
in client implementations:


	CumulusCIFailure: Used to signify a failure rather than an
error, such as test or metadata deployment failures


	CumulusCIUsageError: Use to signify a usage error such as
accessing a task that does not exist






	execute_anon task now accepts either
[apex]{.title-ref} (string) or [path]{.title-ref} (Apex in a local
file) for the Apex to execute. Also, the [managed]{.title-ref} and
[namespaced]{.title-ref} options allow injecting namespace prefixes
into the Apex to be executed.


	New flow [retrieve_scratch]{.title-ref} can be used to retrieve
declarative changes from a scratch org into the src/ directory







2.0.9 (2018-09-10)


	Make robot commands use new lightning URLs


	Remove unused filter_name arg from Go to Record Home robot keyword.


	Fix metadata map for Settings.







2.0.8 (2018-08-21)


	Flows that are executed from within another flow now support
task-level control flow.


	We no longer support the undocumented ability for a Flow to provide
its own class_path.


	Use the connected app details to set a client name on HTTP requests
to Salesforce.







2.0.7 (2018-08-16)


	[cci service show]{.title-ref} has been renamed [cci service
info]{.title-ref}!


	Update default API version in the base YAML to v43.0.


	Doc updates in the tutorial, thanks to @justindonnaruma!


	Significant refactor of the cli module, including a bunch of small
usability and exception handling changes. See
https://github.com/SFDO-Tooling/CumulusCI/pull/708 for details.


	Display the file name for error causing files in more cases.


	Strip packageVersions tags from aura/, components/, and pages/
metadata.


	Update PyYAML dependency.







2.0.6 (2018-08-07)


	In Robot tests that use the standard keyword for interacting with a
lookup field, we now wait for all AJAX requests to complete before
submitting.


	Add unit tests for large sections of the library.


	We now support Flow, DuplicateRule, and other new Metadata types
thanks to @carlosvl.


	Fixed refreshing oauth token when deploying metadata to persistent
orgs.







2.0.5 (2018-08-01)


	Fixes ##695: Update InstallPackageZipBuilder to set activateRSS to
unblock installs.







2.0.4 (2018-07-30)


	Fixes ##611: Scratch org operations were failing on Windows


	Fixes ##664: Scratch org aliases incorrectly included double quotes
in the alias name







2.0.3 (2018-07-27)


	Added support for waiting on Aura HTTP Requests to complete after a
browser action is performed in selenium from the Robot Salesforce
Library:
http://cumulusci.readthedocs.io/en/latest/robotframework.html#waiting-for-lightning-ui


	Github API client will now automatically retry on 502 errors


	Better error messages from parsing errors during package.xml
generation which show the file causing the error







2.0.2 (2018-06-06)


	Bugfix: Update InstallPackageZipBuilder to use a recent api version
to unblock installs.







2.0.1 (2018-06-06)


	Bugfix: Allow passing a connected app directly to
OrgConfig.refresh_oauth_token.







2.0.0 (2018-06-01)

After over 19 months of development as alpha (40 version over 3 months)
and beta (98 releases over 16 months) releases and over a year running
production builds using CumulusCI, it’s time to remove the “beta”
label.

This marks the first production release of CumulusCI 2.x!




2.0.0-beta99 (2018-05-31)


	Ensure that github credentials are never shown in the log for github
dependencies with unmanaged metadata







2.0.0-beta98 (2018-05-31)

WARNING: This release introduces breaking changes to the syntax for
flow definitions and to the default flows. If you customized any of the
default flows in your project or have defined custom flows, you will
need to modify your cumulusci.yml file to work with this release.

Changes default flows shipped with CumulusCI to a new syntax and
structure taking advantage of the ability for flows to call other flows.
This allows flows to be modularized in ways that weren’t possible when
the original set of flows was designed.


	The tasks: section in cumulusci.yml for a flow is now renamed to
steps: A FlowConfigError will be raised if an old style flow
definition is detected. All existing flow customizations and custom
flows need to be changed in the cumulusci.yml to avoid raising
an exception.


	All default flows have been restructured. Existing customizations of
default flows likely need to be changed to adapt to the new
structure. In most cases, you will want to move your customizations
to some of the new config_* or deploy_* instead of the
main flows.


	ci_beta_install has been removed and replaced with
install_beta and uninstall_managed install_beta does not
attempt to uninstall an existing version of the package. If you need
to uninstall the package first, use the uninstall_managed flow
before running install_beta


	Added new qa_org flow to allow different configurations for dev
vs QA orgs


	New modularized flows structure allows for easier and more reusable
customization:



	dependencies Runs the pre-package deployment dependency
tasks update_dependencies and deploy_pre This flow is
called by almost all the main flows.


	config_* flows provide a place to customize the package
configuration for different environments. These flows are
called by the main flows after the package metadata is
deployed or a managed version is installed. Customizations to
the config flows automatically apply to the main flows.



	config_apextest Configure org for running apex tests


	config_dev Configure org for dev use


	config_managed Configure org with a managed package
version installed


	config_packaging Configure the packaging org


	config_qa Configure org for QA use









	deploy_* flows provide a place to customize how metadata
deployments are done. The deploy flows do more than just a
simple deployment such as unscheduling scheduled jobs,
rebuilding the package.xml, and incrementally deleting any
stale metadata in the package from the org.



	deploy_unmanaged Used to do a standard deployment of
the unmanaged metadata


	deploy_packaging Used to deploy to packaging. Wraps
the create_managed_src task around the deploy to
inject metadata that can only be deployed to the
packaging org


	deploy_unmanaged_ee Used to deploy unmanaged
metadata to an Enterprise Edition org using the
create_unmanaged_ee_src task
















	github dependencies can now point to a private Github
repository. All zip downloads from Github will pass the password
(should be a personal access token) from the github service
configured in the CumulusCI keychain.


	GithubRelease, PushUpgradeRequest, and
PackageUploadRequest now track the release data as return values







2.0.0-beta97 (2018-05-31)


	Salesforce Connected App is now a CCI Service! Instead of using [cci
org config_connected_app]{.title-ref} you can use the familiar [cci
service]{.title-ref} commands.


	Better error handling when running commands without specifying a
default org (thanks @topherlandry)


	Fix issue where scratch org password may become outdated


	Improve Robot test runner task to use the already configured CCI
environment instead of trying to create a new one.


	Enable Robot testing in Headless Chrome on Heroku.


	Address Python3 print statement issues.


	Add LogLine task class to log statements and variables.


	Add PassOptionAsResult, PassOptionAsReturnValue to pass options
around in Flows.


	Further extended the Flow runner subclass API.







2.0.0-beta96 (2018-05-18)


	Fixes for CumulusCI on Windows - CumulusCI 2 now supports Windows
environments!


	Support skipping scratch org password creation by specifying
[–no-password]{.title-ref} to [cci org scratch]{.title-ref}


	Add additional logging to PackageUpload







2.0.0-beta95 (2018-05-10)


	Add pytz to requirements







2.0.0-beta94 (2018-05-10)


	Support added for nested flows. Specify a flow instead of a task
inside another flow in cumulusci.yml


	Add new task github_release_report to report info from GitHub
release notes


	Add new flow dev_deploy for minimal deploy (tasks: unschedule_jobs,
deploy)


	Enhance BaseFlow to be more easily subclassed/overridden/observed.
Preserves task step number and adds several hook methods for
subclasses (_pre_task, _post_task, _post_task_exception)


	Refactor github_release_notes task to use github3.py instead of calling the GitHub API directly. Includes these minor changes to functionality:

: - Cannot create release with this task (use
github_create_release instead) - Merge existing release notes even when not publishing



	Fix issue that caused duplicate entries in the dependency tree


	Sort output of os.listdir in all occurrences. Guarantees ordered
iteration over files on disk


	Validate CUMULUSCI_KEY value and raise more helpful exceptions if
invalid







2.0.0-beta93 (2018-04-20)


	Fix issue in command task for Windows


	Support interactive in command task (thanks Chris Landry!)


	Search more pull requests (100 vs 30) when generating release notes


	Add options to Apex documentation generator task







2.0.0-beta92 (2018-04-04)


	Ignore OWNERS file in package.xml generation


	Pipe stderr in command tasks







2.0.0-beta91 (2018-04-03)


	Fix issue in ZIP functionality for Windows







2.0.0-beta90 (2018-03-26)


	Include missing scratch_def.json template file needed by cci project
init







2.0.0-beta89 (2018-03-23)


	Improved cci project init

: - Prompt for extending a repository with HEDA and NPSP as
selectable options - Use jinja2 templates included with cumulusci to create files - Include a default Robot test



	update_package_xml now ignores CODEOWNERS files used by Github


	Fixed an import error for click in cci







2.0.0-beta88 (2018-03-20)


	Fix issue in parsing version from tag name







2.0.0-beta87 (2018-03-15)


	Fix issue in getting latest version







2.0.0-beta86 (2018-03-13)


	Initial Integration with Robot Framework (see here for details:
http://cumulusci.readthedocs.io/en/latest/robotframework.html)


	Add support for GlobalValueSetTranslation Metadata Type (thanks
Christian Szandor Knapp!)


	Use Tooling API for PackageUploadRequest


	New doc “Why CumulusCI?”


	Add documentation for the skip option on GitHub dependencies







2.0.0-beta85 (2018-02-21)


	Support bigobject index element in .object


	Only run meta.xml file cleaning on classes/* and triggers/*
directory


	Add docs on CumulusCI Flow


	Add reference to needing the Push API to run release_beta in
tutorial doc







2.0.0-beta84 (2018-02-12)


	Add new Status ‘Queued’ to PackageUploadRequest check







2.0.0-beta83 (2018-02-08)


	Add a sleep in between successful PackageUploadRequest and querying
for MetadataPackageVersion to address issue in Spring ‘18 packaging
orgs.







2.0.0-beta82 (2018-02-02)


	Update salesforce-bulk package to version 2.0.0


	Fix issue in bulk load data task







2.0.0-beta81 (2018-01-18)


	Filter SObjects by record type in bulk data retrieve


	Fix issue in removing XML elements from file







2.0.0-beta80 (2018-01-08)


	The deploy tasks now automatically clean all meta.xml files in the deployed metadata of any namespace references by removing the <packageVersions> element and children. This allows CumulusCI to fully manage the dependencies and avoids the need for new commits to change referenced versions in meta.xml files.

: - The default functionality can be disabled with the by
setting [clean_meta_xml]{.title-ref} to False



	Github dependencies can now point to a specific tag in the
repository. The tag is used to determine the version to install for
the dependency if the repository has a namespace configured and will
be used to determine which unpackaged metadata to deploy.







2.0.0-beta79 (2017-11-30)


	Fixes ##540: Using a custom [prefix_beta]{.title-ref} fails if
releases with the same version but different prefix already exist in
the repository. Changed to use [tag_name]{.title-ref} instead of
[name]{.title-ref} to check if the release already exists in Github.







2.0.0-beta78 (2017-11-22)

Resolving a few issues from beta77:


	A bug in BaseKeychain.create_scratch_org was causing the creation of
ScratchOrgConfig’s with a days value of None. This caused issues
with subsequent calls against the org.


	Fixed output from new logging in namespace injection


	Switch to using org_config.date_created to check if an org has been
created


	Fix bug in recreation of an expired scratch org







2.0.0-beta77 (2017-11-22)


	New Salesforce DX tasks: dx_convert_from,
dx_convert_to, dx_pull, and
dx_push


	New flow for creating production releases (use with caution!):
release_production


	Scratch org configs can now specify [days]{.title-ref} as an option
which defaults to 1. The default for a scratch config can be
overridden in [cci org scratch]{.title-ref} with the [–days
N]{.title-ref} option


	[cci org remove]{.title-ref} will now attempt to first delete a
scratch org if one was already created


	[cci org scratch]{.title-ref} will prevent you from overwritting a
scratch config that has already created a scratch org (which would
create an orphaned scratch org) and direct you to use [cci org
remove]{.title-ref} instead.


	[cci org list]{.title-ref} now shows the duration days, elapsed
days, and if an org is expired.


	[cci org info]{.title-ref} now shows the expiration date for scratch
orgs


	All [cci]{.title-ref} commands that update an org config will now
attept to automatically recreate an expired scratch org


	New namespace inject token strings are supported for injecting
namespaces into Lightning Component references:


	%%%NAMESPACE_OR_C%%%*: Replaced with either
‘your_namespace’ (unmanaged = False) or ‘c’ (unmanaged =
True)


	%%%NAMESPACED_ORG_OR_C%%%*: Replaced with either
‘your_namespace’ (namespaced_org = True) or ‘c’
(namespaced_org = False)






	Deleted all tasks and code related to [apextestsdb]{.title-ref}
since its functionality is now integrated into MetaCI and no longer
used







2.0.0-beta76 (2017-11-14)


	Fix bug in namespace injection


	Add option to print org info as JSON







2.0.0-beta75 (2017-11-07)


	Fix syntax for github dependency with [–extend]{.title-ref} option
on [cci project init]{.title-ref}







2.0.0-beta74 (2017-11-07)


	Default to Salesforce API version 41.0







2.0.0-beta73 (2017-11-07)


	Fix bug in creating the [dev_namespaced]{.title-ref} scratch org
config from [cci project init]{.title-ref}







2.0.0-beta72 (2017-11-06)


	Fix bug in setting namespace from [cci project init]{.title-ref}







2.0.0-beta71 (2017-11-06)


	Update docs, including tutorial for Windows (thanks Dave Boyce!)


	Add missing “purge on delete” option for BaseUninstallMetadata


	Fix crash when decoding certain strings from the Metadata API
response


	Add support for featureParameter* metadata types (thanks Christian
Szandor Knapp!)







2.0.0-beta70 (2017-10-30)


	Fix issue in zip file processing that was introduced in v2.0.0b69







2.0.0-beta69 (2017-10-27)


	cumulusci.core has been made compatible with Python 3!


	[cci project init]{.title-ref} has been upgraded


	Better prompt driven user experience with explanations of each
prompt


	[–extend <repo_url>]{.title-ref} option to set up a
recursive dependency on another CumulusCI project’s Github
repository


	Creates [sfdx-project.json]{.title-ref} if it doesn’t already
exist


	Creates and populates the [orgs/]{.title-ref} directory if it
does not already exist. The directory is populated with starter
scratch org shape files for the 4 main scratch org configs in
CumulusCI: [beta.json]{.title-ref}, [dev.json]{.title-ref},
[feature.json]{.title-ref}, [release.json]{.title-ref}






	Fix issue with namespace injection


	[push_*]{.title-ref} tasks now accept [now]{.title-ref} for the
[start_time]{.title-ref} option which will start the push upgrade
now (technically 5 seconds from now but that’s better than 5
minutes).







2.0.0-beta68 (2017-10-20)


	Configure [namespace_inject]{.title-ref} for
[deploy_post_managed]{.title-ref}







2.0.0-beta67 (2017-10-20)


	Fix bug where auto-created scratch orgs weren’t getting the
[scratch]{.title-ref} attribute set properly on their
[ScratchOrgConfig]{.title-ref} instance.







2.0.0-beta66 (2017-10-20)


	Configure [namespace_inject]{.title-ref} for
deploy_post


	Fix the [–debug]{.title-ref} flag on [cci task run]{.title-ref}
and [cci flow run]{.title-ref} to allow debugging of exceptions
which are caught by the CLI such as MetadataApiError,
MetadataComponentError, etc.







2.0.0-beta65 (2017-10-18)


Breaking Changes


	If you created custom tasks off of [DeployNamespaced]{.title-ref} or
[DeployNamespacedBundles]{.title-ref}, you will need to switch to
using [Deploy]{.title-ref} and [DeployBundles]{.title-ref}. The
recommended configuration for such custom tasks is represented
below. In flows that need to inject the actual namespace prefix,
override the [unmanaged]{.title-ref} option .. :

custom_deploy_task:
    class_path: cumulusci.tasks.salesforce.Deploy
    options:
        path: your/custom/metadata
        namespace_inject: $project_config.project__package__namespace
        unmanaged: False












Enhancements


	The [cci]{.title-ref} CLI will now check for new versions and print
output at the top of the log if a new version is available


	The [cci]{.title-ref} keychain now automatically creates orgs for
all named scratch org configs in the project. The orgs are created
with the same name as the config. Out of the box, CumulusCI comes
with 4 org configs: [dev]{.title-ref}, [feature]{.title-ref},
[beta]{.title-ref}, and [release]{.title-ref}. You can add
additional org configs per project using the [orgs]{.title-ref} ->
[scratch]{.title-ref} section of the project’s
[cumulusci.yml]{.title-ref}. With this change, [cci org
list]{.title-ref} will always show at least 4 orgs for any project.
If an org already exists in the keychain, it is not touched and no
scratch org config is auto-created for that config. The goal is to
eliminate the need to call [cci org scratch]{.title-ref} in most
cases and make it easier for new users to get up and running with
scratch orgs and CumulusCI.


	[cci org remove <org_name>]{.title-ref} is now available to remove
orgs from the keychain


	Scratch orgs created by CumulusCI are now aliased using the naming
format [ProjectName__org_name]{.title-ref} so you can easily run
sfdx commands against scratch orgs created by CumulusCI


	[cci org list]{.title-ref} now shows more information including
[scratch]{.title-ref}, [config_name]{.title-ref}, and
[username]{.title-ref}. NOTE: config_name will only be populated for
newly created scratch configs. You can use [cci org
scratch]{.title-ref} to recreate the config in the keychain.


	The new flow dev_org_namespaced provides a base flow
for deploying unmanaged metadata into a namespaced org such as a
namespaced scratch org


	All tasks which previously supported [namespace_inject]{.title-ref}
now support a new option, [namespaced_org]{.title-ref}. This option
is designed to handle use cases of namespaced orgs such as a
namespaced scratch org. In namespaced orgs, all unmanaged metadata
gets the namespace prefix even if it is not included in the package.
You can now use the [namespaced_org]{.title-ref} option along with
the file content token [%%%NAMESPACED_ORG%%%]{.title-ref} and the
file name token [___NAMESPACED_ORG___]{.title-ref} to inject
the namespace when deploying to a namespaced org.
[namespaced_org]{.title-ref} defaults to False to be backwards
compatible with previous functionality.


	New task push_list supports easily pushing a list of
OrgIds via the Push API from the CLI: [cci task run push_list -o
file <file_path> -o version 1.2 –org packaging]{.title-ref}









2.0.0-beta64 (2017-09-29)


	Show proper exit status for failed tests in heroku_ci.sh


	Handle BrowserTestFailure in CLI


	Fix issue that prevented auto-merging master to parent branch







2.0.0-beta63 (2017-09-26)


	Documentation has been updated!


	CumulusCI now supports auto detection of repository information from
CI environments. This release includes an implementation for Heroku
CI







2.0.0-beta62 (2017-09-19)


	cci now supports both namespaced and non-namespaced scratch org
configurations in the same project. The default behavior changes
slightly with this release. Before, if the
[sfdx-project.json]{.title-ref} had a namespace configured, all
scratch orgs created via [cci org scratch]{.title-ref} would get the
namespace. With the new functionality, all orgs would by default not
have the namespace. You can configure individual org configs in your
project’s [cumulusci.yml]{.title-ref} file by setting [namespace:
True]{.title-ref} under [orgs -> scratch ->
<org_name>]{.title-ref}







2.0.0-beta61 (2017-09-12)


	Fix bug that was causing a forced token refresh with [sfdx
force:org:open]{.title-ref} at the start of a flow or task run
against a freshly created scratch org.


	Add support for Big Objects with [__b]{.title-ref} suffix in
update_package_xml and



	Fix bug that caused release notes sections to not render if only h2
content found







2.0.0-beta60 (2017-09-06)


	Add support for Platform Events with [__e]{.title-ref} suffix in
update_package_xml and








2.0.0-beta59 (2017-09-06)


	[YamlProjectConfig]{.title-ref} can now accept an
[additional_yaml]{.title-ref} keyword argument on initialization.
This allows a 5th level of layering to the
[cumulusci.yml]{.title-ref} config. This change is not wired up to
the CLI yet but is available for application built on top of
cumulusci to use.


	[cumulusci.core.flow]{.title-ref} and
[cumulusci.core.keychain]{.title-ref} now have 100% test coverage







2.0.0-beta58 (2017-08-29)


	Fix import error in []github-release-notes() task
introduced in beta57







2.0.0-beta57 (2017-08-28)


	Task options can now dynamically reference attributes from the
project_config using the syntax
[$project_config.attr_name]{.title-ref}. For example,
[$project_config.repo_branch]{.title-ref} will resolve to the
current branch when the task options are initialized.


	New task [github_parent_to_children]{.title-ref} uses new
functionality in [MergeBranch]{.title-ref} to support merging from a
parent feature branch (ex. [feature/parent]{.title-ref}) into all
child branches (ex. [feature/parent__child]{.title-ref}).


	 task will now skip child
branches if their corresponding parent branch exists


	ci_feature flow now runs
[github_parent_to_children]{.title-ref} at the end of the flow


	Github task classes were restructured but the
[class_path]{.title-ref} used in [cumulusci.yml]{.title-ref} remains
the same


	New test coverage for github tasks







2.0.0-beta56 (2017-08-07)


	Add stderr logging to scratch org info command







2.0.0-beta55 (2017-08-07)


	Fix API version issue in Apex test runner







2.0.0-beta54 (2017-08-04)


	Fix issue in parsing test failure details when org has objects that
need to be recompiled.







2.0.0-beta53 (2017-08-04)


	Fix “cci org config_connected_app” for Windows


	Update tutorial for Windows usage


	Reverse pull request order for release notes







2.0.0-beta52 (2017-08-02)


	Release notes parsers now specified in cumulusci.yml







2.0.0-beta51 (2017-08-01)


	New task to commit ApexDoc output


	New test runner uses Tooling API to get limits data







2.0.0-beta50 (2017-07-18)


	Fix handling of boolean command line args







2.0.0-beta49 (2017-07-10)


	New task batch_apex_wait allows pausing until an Apex
batch job completes. More details at
https://github.com/SFDO-Tooling/CumulusCI/pull/372


	SalesforceBrowserTest task now accepts [extra]{.title-ref} argument
for specifying extra command line arguments separate from the
command itself


	Resolved ##369: Scratch org tokens expiring after upgrade to SFDX
beta







2.0.0-beta48 (2017-06-28)


	Upgraded to the Salesforce DX Beta (thanks to @Szandor72 for the
contribution!)


	NOTE: CumulusCI will no longer work with the sfdx pilot release
after this version!


	Replaced call to [force:org:describe]{.title-ref} with
[force:org:display]{.title-ref}


	Changed json response parsing to match beta format






	New SFDX wrapper tasks


	`SFDXBaseTask`: Use for tasks that don’t need org access


	`SFDXOrgTask`: Use for sfdx tasks that need org access. The
task will refresh the cci keychain org’s token and pass it to
sfdx as the target org for the command


	`SFDXJsonTask`: Use for building tasks that interact with sfdx
via json responses


	`SFDXJsonPollingTask`: Use for building tasks that wrap sfdx
json responses including polling for task completion


	`SFDXDeploy`: An example of using
[SFDXJsonPollingTask]{.title-ref} to wrap
[force:mdapi:deploy]{.title-ref}






	Fixed infinite loop if setting scratch org password fails







2.0.0-beta47 (2017-06-26)


	Fix typo in tasks.util







2.0.0-beta46 (2017-06-23)


	Fix bug in implementation of the [–no-prompt]{.title-ref} flag
when sentry is configured







2.0.0-beta45 (2017-06-23)


	The new [BaseSalesforceApiTask]{.title-ref} class replaces
[BaseSalesforceApiTask]{.title-ref},
[BaseSalesforceBulkApiTask]{.title-ref}, and
[BaseSalesforceToolingApiTask]{.title-ref} by combining them into a
single task class with access to all 3 API’s via
[self.sf]{.title-ref}, [self.tooling]{.title-ref}, and
[self.bulk]{.title-ref} from inside a task instance.


	Added integration with sentry.io


	Use [cci service connect sentry]{.title-ref} to enable the
sentry service


	All task execution exceptions will be logged as error events in
sentry


	[cci task run]{.title-ref} and [cci flow run]{.title-ref} will
now show you the url to the sentry event if one was registered
and prompt to open in a browser.


	[cci task run]{.title-ref} and [cci flow run]{.title-ref} now
accept the [–no-prompt]{.title-ref} option flag for running in
non-interactive mode with the sentry service configured. Use
this if you want to log build errors in sentry but not have
builds fail due to a hanging prompt.






	If a scratch org password has expired, it is now regenerated when
calling [cci org info]{.title-ref}


	New task unschedule_apex was added to unschedule
background jobs and added to the start of the [dev_org]{.title-ref}
flow


	 task now uses the project’s
dependencies as the namespace/version to update in the meta.xml
files


	The bulkdata mapping now properly supports Record Types


	Fixed a bug with BulkDataQuery where local references weren’t
getting properly set


	New CumulusCI Branch & Release Overview diagram presention is
available at
http://developer.salesforce.org/CumulusCI/diagram/process_overview.html
Use left/right arrow buttons on your keyboard to navigate through
the presentation.


	CumulusCI is now being built by Heroku CI using the config in
[app.json]{.title-ref}







2.0.0-beta44 (2017-06-09)


	Fix issue in update_dependencies when a github
dependency depends on another github dependency







2.0.0-beta43 (2017-06-09)


	Fix issue in [mrbelvedere_publish]{.title-ref} where the new zip_url
dependencies weren’t being skipped







2.0.0-beta42 (2017-06-09)


	Move github dependency resolution logic into
project_config.get_static_dependencies() for reuse in tasks other
than UpdateDependencies


	Fixed the mrbelvedere_publish task when using github references


	Improved output from parsing github dependencies


	Fix issue in [BulkDataQuery]{.title-ref} character encoding when
value contains utf8 special characters







2.0.0-beta41 (2017-06-07)


	The [dependencies]{.title-ref} section in cumulusci.yml now supports
the [skip]{.title-ref} option for Github dependencies which can be
used to skip specific subfolders under [unpackaged/]{.title-ref} in
the target repository


	New task class BulkDataQuery reverses the BulkDataLoad and uses the
mapping to build SOQL queries to capture the data in the mapping
from the target org. The data is written to a database that can then
be used by BulkDataLoad to load into a different org.


	The Delete util task now uses the glob library so it can support
paths with wildcards like src/*


	New tasks  and
meta_xml_dependencies handle updating
[*-meta.xml]{.title-ref} files with api versions or underlying
package versions.







2.0.0-beta40 (2017-06-03)


	More enhancements to update_dependencies including the
ability to handle namespace injection, namespace stripping, and
unmanaged versions of managed repositories. See the new doc at
http://cumulusci.readthedocs.io/en/latest/dependencies.html







2.0.0-beta39 (2017-06-02)


	Fix new bug in update_dependencies which caused
failure when running against an org that already has a required
package installed







2.0.0-beta38 (2017-06-01)


	update_dependencies now properly handles references to
a github repository that itself contains dependencies in its
cumulusci.yml file


	update_dependencies now handles deploying unmanaged
metadata from subfolders under unpackaged/pre of a referenced Github
repository


	The [dependencies]{.title-ref} section of
[cumulusci.yml]{.title-ref} now supports installing from a zip of
metadata hosted at a url if you provide a [zip_url]{.title-ref} and
optionally a [subfolder]{.title-ref}







2.0.0-beta37 (2017-06-01)


	update_dependencies now supports dynamically
referencing other Github repositories configured with a
cumulusci.yml file. The referenced repository’s cumulusci.yml is
parsed and the dependencies are included. Also, the Github API is
used to find the latest release of the referenced repo if the
cumulusci.yml has a namespace configured. Welcome to dynamic package
dependency management ;)


	[cci task run]{.title-ref} now supports the option flags
[–debug-before]{.title-ref} and [–debug-after]{.title-ref}


	Fix for JUnit output rendering in run_tests







2.0.0-beta36 (2017-05-19)


	Flows can now accept arguments in the CLI to override task options


	[cci flow run install_beta -o install_managed_beta__version
“1.0 (Beta 123)”]{.title-ref}






	Flows can now accept arguments to in the CLI to skip tasks


	[cci flow run ci_feature –skip run_tests_debug –skip
deploy_post]{.title-ref}






	Anonymous apex failures will now throw an exception and fail the
build in execute_anon


	Fixes ##322: local variable ‘message’ referenced before assignment







2.0.0-beta35 (2017-05-19)


	New task execute_anon is available to run anonymous
apex and takes the extra task option [apex]{.title-ref}







2.0.0-beta34 (2017-05-16)


	Fixes ##317: ERROR: Invalid version specified







2.0.0-beta33 (2017-05-11)


	cci org connect and cci org scratch now accept the –default option
flag to set the newly connected org as the default org for the repo


	cci org scratch now accepts a new option, –devhub <username>,
which allows you to specify an alternate devhub username to use when
creating the scratch org


	The SalesforceBrowserTest class now throws a BrowserTestFailure if
the command returns an exit status of 1


	Scratch org creation no longer throws an exception if it fails to
set a random password on the newly created org


	Push API task enhancements:


	Push org lists (text files with one org ID per line) can now
have comments and blank lines. The first word on the line is
assumed to be the org ID and anything after that is ignored.


	Fixes ##294


	Fixes ##306


	Fixes ##208











2.0.0-beta32 (2017-05-04)


	Scratch orgs now get an auto-generated password which is available
via [cci org info]{.title-ref}


	Added metadata mapping for StandardValueSets to fix ##310


	Throw nicer exceptions when scratch org interaction fails







2.0.0-beta31 (2017-04-12)


	Use UTC for all Salesforce API date/time fields


	Fix issue with listing metadata types


	Add generic polling method to BaseTask







2.0.0-beta30 (2017-04-04)


	New task list_metadata_types


	[push upgrades] Fix push request status Cancelled –> Canceled


	[push upgrades] Fix datetime namespace issues


	[pyinstaller] Import project-level modules with run-time hook







2.0.0-beta29 (2017-04-04)


	Report push status if start time is less than 1 minute in the future







2.0.0-beta28 (2017-03-30)


	Fix bug in Push API batch retry logic introduced in beta25







2.0.0-beta27 (2017-03-29)


	Skip org in push if statusCode is UKNOWN_EXCEPTION







2.0.0-beta26 (2017-03-29)


	Fixes ##278: Push upgrade raises exception for DUPLICATE_VALUE
statusCode







2.0.0-beta25 (2017-03-28)


	Fixes ##277: Push API tasks now correctly handle errors in individual
orgs in a batch when scheduling a push job







2.0.0-beta24 (2017-03-27)


	Fixes ##231: Handle unicode in package.xml generation


	Fixes ##239: Replace fix for windows path issues from beta23 with a
better implementation


	Fixes ##275: Properly pass purge_on_delete option value in
uninstall_packaged_incremental







2.0.0-beta23 (2017-03-22)


	Fixes ##239: Add local path to import path when looking up classes.
This should fix an error that appeared only in Windows







2.0.0-beta22 (2017-03-20)


	[]github-release-notes() now supports the
[link_pr]{.title-ref} option to add links to the pull request where
each line of content came from


	Fixes ##266: update_dependencies now supports the
[purge_on_delete]{.title-ref} option to allow running against
production orgs


	Fixes ##267: package.xml generation now skips RecordType when
rendering in delete mode







2.0.0-beta21 (2017-03-17)


	Fix parsing of OrgId from the access token using the new sfdx CLI







2.0.0-beta20 (2017-03-17)


	Switch to using the [sfdx]{.title-ref} CLI for interacting with
scratch orgs. If you use [cci]{.title-ref} with scratch orgs, this
release will no longer work with the [heroku force:*]{.title-ref}
commands from the prior Salesforce DX release.


	Upgrades to release notes generator


	Content is now grouped by subheading under each heading


	Better error message is thrown if a lightweight tag is found
when an annotated tag is needed











2.0.0-beta19 (2017-03-15)


	Fixes ##261: cci org info should refresh token first







2.0.0-beta18 (2017-03-14)


	Skip deleting Scontrols in incremental delete


	Escape package name when generating package.xml







2.0.0-beta17 (2017-03-14)


	OrgConfig and subclasses now support self.username to get the
username


	Flows no longer have access to task instance attributes for
subsequent task options. Instead, custom task classes should set
their task return_values member.


	Improve printing of org info when running tasks from a flow by only
printing once at the start of flow. All tasks have an optional
self.flow attribute now that contains the flow instance if the task
is being run from a flow.


	BaseTask now includes methods for handling retry logic. Implemented
in the InstallPackageVersion and RunApexTests


	New task retrieve_unpackaged can be used to retrieve
metadata from a package.xml manifest


	Fixes ##240 - CumulusCI should now properly handle escaping special
characters in xml where appropriate


	Fixes ##245 - Show config values in task info


	Fixes ##251 - ApiRetrieveUnpackaged _clean_package_xml() can’t
handle metadata with spaces in names


	Fixes ##255 - ApiListMetadata does not list certain metadata types
with default folder value







2.0.0-beta16 (2017-02-17)


	Allow batch size to be configured for push jobs with the
[batch_size]{.title-ref} job







2.0.0-beta15 (2017-02-15)


	Bug fix release for bug in update_admin_profile from
the beta 14 release changes to the ApiRetrieveUnpackaged class







2.0.0-beta14 (2017-02-15)


	The new [RetrieveReportsAndDashboards]{.title-ref} task class that
can retrieve all reports and dashboards from a specified list of
folders


	Documentation improvements contributed by @tet3


	Include userinfo in the OrgConfig, and print username and org id at
the beginning of every task run. Contribution by @cdcarter


	[project_local_dir]{.title-ref} (e.g.,
[~/.cumulusci/NPSP-Extension-Template/]{.title-ref}, home of the
encrypted keychain and local override config) now rely on the
project name configured in cumulusci.yml instead of the existence of
a git remote named origin. Contribution by @cdcarter







2.0.0-beta13 (2017-02-09)


	New services registration support added by community contribution
from @cdcarter


	Services and their schemas can now be defined in the
cumulusci.yml file. See
https://github.com/SFDO-Tooling/CumulusCI/issues/224 for more
details until docs are fully updated


	[cci services list]{.title-ref}


	[cci services show github]{.title-ref}


	[cci services connect github]{.title-ref}






	Improved error handling for metadata deployment failures:


	Metadata deployments now throw more specific errors when
appropriate: MetadataComponentFailure, ApexTestFailure, or
MetadataApiError


	Output for each component failure on a deploy now includes more
information such as the column number of the error






	release_beta now ignores errors in the
[]github-release-notes() process by default







2.0.0-beta12 (2017-02-02)


	Throw better exceptions if there are failures creating or deleting
scratch orgs







2.0.0-beta11 (2017-02-01)


	Fixes and new functionality for
 task.


	Added support for project -> package -> name_managed in the
cumulusci.yml file to specify a different package name to use
when deploying to the packaging org.


	Fixed bug with install_class and uninstall_class handling











2.0.0-beta10 (2017-01-20)


	Completed removed CumulusCI 1 code from the repository and egg. The
egg should be 17MB smaller now.


	Removed [cumulusci.tasks.ant.AntTask]{.title-ref}. Please replace
any usage with [cumulusci.tasks.command.Command]{.title-ref} or
[cumulusci.tasks.command.SalesforceCommand]{.title-ref}


	Removed the [update_meta_xml]{.title-ref} task for now since it was
the only task relying on Ant. A new and much better Python based
implementation will be coming soon.







2.0.0-beta9 (2017-01-20)


	A few upgrades to the Command task:


	No longer strip left side whitespace from output to preserve
indentation


	New method [_process_output]{.title-ref} can be overridden to
change how output lines are processed


	New method [_handle_returncode]{.title-ref} can be overridden
to change how exit status is handled











2.0.0-beta8 (2017-01-19)


	Added new task classes util.DownloadZip, command.SalesforceCommand,
and command.SalesforceBrowserTestCommand that can be mapped in
individual projects to configure browser tests or other commands run
against a Salesforce org. The commands are automatically passed a
refreshed [SF_ACCESS_TOKEN]{.title-ref} and
[SF_INSTANCE_URL]{.title-ref} environment variables.


	Added new CLI commands [cci project connect_saucelabs]{.title-ref}
and [cci project show_saucelabs]{.title-ref}


	Added  flow that uninstalls the
previous managed version then installs the latest beta without
running apex tests


	Added new method cumulusci.utils.download_extract_zip to download
and extract a zip including re-rooting the zip to a subfolder.


	All Salesforce tasks now delete any tempdirs they create to prevent
wasting disk space







2.0.0-beta7 (2017-01-17)


	[run_tests_debug]{.title-ref} now ignores all non-test methods
including any method decorated with @testSetup







2.0.0-beta6 (2017-01-17)


	Return full info when a component failure occurs on a Metadata API
deployment. Previously only the problem was shown without context
like file name and line number making it difficult to figure out
what caused the failure.


	[run_tests_debug]{.title-ref} now ignores the @testSetup method
when parsing debug logs. Previously it would throw an error if tests
used @testSetup







2.0.0-beta5 (2017-01-16)


	Fixes for the unmanaged_ee flow to fix a bug where
avialableFields elements were not properly being stripped from
fieldsSets in .object files


	Fixes for  where merge
conflicts would throw exception rather than creating a pull request
as expected







2.0.0-beta4 (2017-01-13)


	Add update_admin_profile to all flows that deploy or
install to a Salesforce org. Note that this adjusted the task
numbers in some flows so you should double check your project
specific flow customizations.







2.0.0-beta3 (2017-01-13)


	Remove deploy-post-managed task from the default
ci_master flow. Deploying the unpackaged/post content
to the packaging org risks the spider accidentally including some of
it in the package. Projects that want to run
deploy-post-managed against the packaging org can
extend ci_master in their cumulusci.yml file to add
it.







2.0.0-beta2 (2017-01-12)


	Fix a bug in project_config.get_latest_version() with tags that
don’t match either the beta or release prefix.







2.0.0-beta1 (2017-01-12)


	Move into the master branch!


	Changed primary CLI command to [cci]{.title-ref} and left
[cumulusci2]{.title-ref} available for legacy support


	Changed all docs to use [cci]{.title-ref} command in examples


	Peg push api tasks to api version 38.0 rather than project api
version


	Added 2 new flows: install_beta and
install_prod which install the latest managed version
of the package with all dependencies but without running tests


	release_beta flow now runs
 at the end of the flow







2.0.0-alpha42 (2017-01-10)


	Metadata API calls now progressively wait longer between each status
check to handle calls with long Pending times. Each check also now
outputs a line saying how long it will sleep before the next check.







2.0.0-alpha41 (2017-01-06)


	Fix bug in uninstall_packaged_incremental where the
task would error out if no metadata was found to delete







2.0.0-alpha40 (2017-01-06)


	uninstall_packaged_incremental task now skips the
deploy step if now metadata was found to be deleted







2.0.0-alpha39 (2017-01-06)


	Two new task classes exist for loading and deleting data via Bulk
API. Note that there are no default task mappings for these classes
as the mappings should be project specific. Define your own mappings
in your project’s cumulusci.yml file to use them.


	cumulusci.tasks.bulkdata.LoadData: Loads relational data
from a sqlite database into Salesforce objects using a yaml file
for mapping


	cumulusci.tasks.bulkdata.DeleteData: Deletes all records
from specified objects in order of object list






	Added support for customPermissions


	Added new Command task that can be used to call arbitrary commands
with configurable environment variables







2.0.0-alpha38 (2016-12-28)


	Scratch orgs now cache the org info locally during flow execution to
prevent multiple calls out to the Heroku CLI that are unnecessary


	Scratch org calls now properly capture and print both stdout and
stderr in the case of an exception in calls to Heroku CLI


	[run_tests_debug]{.title-ref} now deletes existing TraceFlag objects
in addition to DebugLevels


	Fix bug in push_all and push_sandbox


	Push tasks now use timezone for start_date option







2.0.0-alpha37 (2016-12-20)


	[]github-release-notes() now correctly handles the
situation where a merge commit’s date can be different than the
PR’s merged_at date in Github by comparing commit sha’s







2.0.0-alpha36 (2016-12-20)


	github_release now works with an existing tag/ref and
sleeps for 3 seconds after creating the tag to allow Github time to
catch up







2.0.0-alpha35 (2016-12-20)


	Remove [draft]{.title-ref} option from github_release
since the Github API doesn’t support querying draft releases







2.0.0-alpha34 (2016-12-20)


	Fix bug with github_release that was causing
validation errors from Github







2.0.0-alpha33 (2016-12-20)


	[]github-release-notes() now raises an exception in
[publish]{.title-ref} mode if the release doesn’t exist instead of
attempting to create it. Use github_release to create
the release first before calling []github-release-notes()


	Fix a bug with dynamic task option lookup in flows







2.0.0-alpha32 (2016-12-19)


	Move logger configuration out of core and into CLI so other
implementations can provide their own logger configurations


	Added [retry_interval]{.title-ref} and
[retry_interval_add]{.title-ref} options to
install_beta to introduce a progressive delay between
retry attempts when the package is unavailable







2.0.0-alpha30 (2016-12-13)


	IMPORANT This release changes the yaml structure for flows. The
new structure now looks like this:

flows:
    flow_name:
        tasks:
            1:
                task: deploy
            2:
                task: run_tests







	See the new flow customization examples in the cookbook for examples
of why this change was made and how to use it:
http://cumulusci.readthedocs.io/en/latest/cookbook.html#custom-flows-via-yaml







2.0.0-alpha30 (2016-12-12)


	Bug fixes submitted by @ccarter:


	uninstall_post was failing to substitute
namespaces


	new util method [findRename]{.title-ref} to rename files with a
token in their name






	Bug fix with Unicode handling in run_tests_debug







2.0.0-alpha29 (2016-12-12)


	Require docutils to supprot rst2ansi







2.0.0-alpha28 (2016-12-12)


	Modified tasks and flows to properly re-raise exceptions







2.0.0-alpha27 (2016-12-12)


	[cci]{.title-ref} should now throw the direct exception rather than
making it look like the exception came through click


	[cci task doc]{.title-ref} command outputs RST format documentation
of all tasks


	New doc with info on all tasks:
http://cumulusci.readthedocs.io/en/latest/tasks.html







2.0.0-alpha26 (2016-12-09)


	Bug fix, missing import of re in core/config.py







2.0.0-alpha25 (2016-12-09)


	Fixed run_tests and run_tests_debug tasks to fail throwing an
exception on test failure


	run_tests_debug now stores debug logs in a tempdir


	Have the CLI handle ApexTestException events with a nicer error
rather than a full traceback which isn’t helpful to determining the
apex failure


	BaseMetadataApi will now throw MetadataApiError after a Failed
status is set


	BaseFlow now throws the original exception rather than a more
generic one that obscures the actual failure







2.0.0-alpha24 (2016-12-09)


	Bug fix release, flow_run in the CLI should accept debug argument
and was throwing and error







2.0.0-alpha23 (2016-12-09)


	[cci org browser]{.title-ref} now saves the org back to the
keychain. This fixes an issue with scratch orgs where a call to org
browser on a scratch org that hasn’t been created yet gets created
but doesn’t persist after the command


	[task run]{.title-ref} and [flow run]{.title-ref} now support the
[–debug]{.title-ref} flag which will drop you into the Python
interactive debugger (pdb) at the point of the exception.


	Added Cookbook to the docs:
http://cumulusci.readthedocs.io/en/latest/cookbook.html


	[flow run]{.title-ref} with the [–delete-org]{.title-ref} option
flag and scratch orgs no longer fails the flow if the delete org
call fails.


	Fixed the deploy_post task which has having errors
with namespaced file names


	Fixed update_admin_profile to properly update the
profile. This involved fixing the utils [findReplace]{.title-ref}
and [findReplaceRegex]{.title-ref}.


	Reworked exceptions structure and ensure that tasks throw an
exception where approriate.







2.0.0-alpha22 (2016-12-02)


	Fix for bug in deploy_post when using the filename token to merge
namespace into a filename







2.0.0-alpha21 (2016-12-01)


	Added support for global and project specific orgs, services, and
connected app. The global credentials will be used by default if
they exist and individual projects an override them.


	Orgs still default to creating in the project level but the
[–global]{.title-ref} flag can be used in the CLI to create an
org


	[config_connected_app]{.title-ref} command now sets the
connected app as global by default. Use the ‘–project’ flag
to set as a project override


	[connect_github]{.title-ref}, [connect_mrbelvedere]{.title-ref},
and [connect_apextestsdb]{.title-ref} commands now set the
service as global by default. Use the ‘–project’ flag to set
as a project override











2.0.0-alpha20 (2016-11-29)


	Remove pdb from BaseFlow.__call__ (oops)







2.0.0-alpha19 (2016-11-29)


	Fix IOError issue with update_admin_profile when using the egg
version


	Changed cci task_run and flow_run commands to no longer swallow
unknown exceptions so a useful error message with traceback is shown


	Centralized loggers for BaseConfig, BaseTask, and BaseFlow under
cumulusci.core.logger and changed logs to always write to a temp
file available as self.log_file on any config, task, or flow
subclass.







2.0.0-alpha18 (2016-11-17)


	New task [apextestsdb_upload]{.title-ref} uploads json test data to
an instance of ApexTestsDB


	Fixed bug in CLI when running tasks that don’t require an org


	Include mappings for Community Template metadata types in
package.xml generator







2.0.0-alpha17 (2016-11-15)


	Community contributions by @cdcarter


	query task using the Bulk Data API


	[–login-url]{.title-ref} option on [cci org
connect]{.title-ref}






	Salesforce DX wrapper


	NOTE: Requires developer preview access to Salesforce DX


	[cci org scratch <config_name> <org_name>]{.title-ref}
creates a wrapper for a scratch org in your keychain


	Tasks and Flows run against a scratch org will create the
scratch org if needed


	[cci org scratch_delete <org_name>]{.title-ref} deletes a
scratch org that was created by running a task or flow


	[cci flow run]{.title-ref} now supports the
[–delete-org]{.title-ref} option to delete a scratch org at
the end of the flow


	[BaseSalesforceDXTask]{.title-ref} wraps the heroku force:*
commands. The dx_push task is provided as an
example.


	NOTE: Currently the command output is buffered and only
outputs when the command completes.










	Integration with mrbelvedere


	 task publishes a beta or
release tag to an existing package on mrbelvedere






	Flow changes



	ci_feature now runs tests as part of the flow


	New flow task configuration [ignore_failure]{.title-ref} can
be used to ignore a failure from a particular task in the flow









	CUMULUSCI_KEY is no longer required if using a keychain class with
the encrypted attribute set to False such as the
EnvironmentProjectKeychain


	Refactored OAuth token refresh to be more centralized and raise a
proper exception if there is an issue


	The org keychain now correctly uses the instance url when
appropriate


	Calls to runTestsAsynchronous in the Tooling API are now done via
POST instead of GET







2.0.0-alpha16 (2016-11-3)


	Fix bug in SOAP calls to MDAPI with newer versions of the requests
library


	This version was used to record the demo screencast:
https://asciinema.org/a/91555







2.0.0-alpha15 (2016-11-3)


	Fix CLI bug in new exception handling logic







2.0.0-alpha14 (2016-11-3)


	Fix version number


	Fix bug in BaseSalesforceBulkApiTask (thanks @cdcarter)







2.0.0-alpha13 (2016-11-3)


	Nicer log output from tasks and flows using
[coloredlogs]{.title-ref}


	Added handling for packed git references in the file
.git/packed-refs


	Docs now available at http://cumulusci.readthedocs.io


	Tasks and Flows run through the CLI now show a more simple message
if an exception is thrown







2.0.0-alpha12 (2016-11-2)


	Automatic detection of latest production and beta release via Github
Releases


	project_config.get_latest_release() added to query Github
Releases to find the latest production or beta release version


	InstallPackage now accepts the virtual versions ‘latest’ and
‘latest_beta’ as well as specific versions for the version
option






	New flows:


	ci_feature: Runs a full deployment of the unmanaged code for
testing in a feature org


	ci_master: Runs a full deployment of the managed version of the
code into the packaging org


	ci_beta: Installs the latest beta and runs all tests


	ci_release: Installs the latest release and runs all tests


	release_beta: Uploads a beta release of the metadata in the
packaging org, creates a Github Release, and generates release
notes






	Removed the hard coded slots in the keychain for github,
mrbelvedere, and apextestsdb and replaced with a more generic
concept of named keychain services. keychain.get_service(‘name’)
retrieves a named service. The CLI commands for setting github,
mrbelvedere, and apextestsdb were modified to write the service
configs to the new structure.


	Flow tasks can now access previous tasks’ attributes in their
options definitions. The syntax is ^^task_name.attr1.attr2


	Flow output is now nicer showing the flow configuration and the
active configuration for each task before execution


	New tasks


	update_package_xml_managed: Create a new package.xml from the
metadata in src/ with attributes only available when deploying
to packaging org


	run_tests: Runs matching apex tests in parallel and generate a
JUnit report


	run_tests_debug: Runs matching apex tests in parallel, generates
JUnit report, captures debug logs, and parses debug logs for
limits usage outputing results to test_results.json


	run_tests_managed: Runs matching apex tests in parallel from the
package’s namespace and generate a JUnit report











2.0.0-alpha11 (2016-10-31)


	project_config.repo_root is now added to the python syspath, thanks
@cdcarter for the contribution


	Tasks for the new Package Upload API


	upload_beta: Uploads a beta release of the metadata currently in
the packaging org


	upload_production: Uploads a production release of the metadata
currently in the packaging org






	Dependency management for managed packages:


	update_dependencies: Task that ensures the target org has all
dependencies installed at the correct version


	Dependencies are configured using the dependencies: heading in
cumulusci.yml under the project: section






	Integrated salesforce-bulk and created BaseSalesforceBulkApiTask for
building bulk data tasks


	Added [cci version]{.title-ref} command to print out current package
version, thanks @cdcarter for the contribution







2.0.0-alpha10 (2016-10-28)


	More pure Python tasks to replace ant targets:


	create_ee_src


	retrieve_packaged


	retrieve_src


	revert_ee_src


	uninstall_packaged_incremental


	update_admin_profile






	New flow:


	unmanaged_ee: Deploys unmanaged code to an EE org






	New cumulusci.utils


	CUMULUSCI_PATH: The absolute path to the root of CumulusCI


	findReplaceRegex: Recursive regex based search/replace for files


	zip_subfolder: Accepts a zipfile and path, returns a zipfile
with path as root






	Fix bug where repo_name was not being properly handled if it origin
ended in .git







2.0.0-alpha9 (2016-10-27)


	Switch to using [plaintable]{.title-ref} for printing text tables in
the following CLI commands:


	cci org list


	cci task list


	cci task info


	cci flow list






	Easier project set up: [cci project init]{.title-ref} now prompts
for all project values using the global default values


	More pure Python Metadata API tasks:


	create_package


	install_package


	uninstall_managed


	uninstall_packaged


	uninstall_pre


	uninstall_post


	uninstall_post_managed






	New tasks to interact with the new PackageUploadRequest object in
the Tooling API


	upload_beta


	upload_production






	Python task to replace deployUnpackagedPost ant target with support
for replacing namespace prefix in filenames and file contents


	deploy_post


	deploy_post_managed






	Python tasks to replace createManagedSrc and revertManagedSrc ant
targets


	create_managed_src


	revert_managed_src











2.0.0-alpha8 (2016-10-26)


	New tasks for push upgrading packages


	push_all: Pushes a package version to all available subscriber
orgs


	ex: cci task run –org packaging -o version 1.1 push_all






	push_qa: Pushes a package version to all org ids in the file
push/orgs_qa.txt in the repo


	ex: cci task run –org packaging -o version 1.1 push_qa






	push_sandbox: Pushes a package version to all available sandbox
subscriber orgs


	ex: cci task run –org packaging -o version 1.1
push_sandbox






	push_trial: Pushes a package version to all org ids in the file
push/orgs_trial.txt in the repo


	ex: cci task run –org packaging -o version 1.1 push_trial






	Configurable push tasks in cumulusci.tasks.push.tasks:


	SchedulePushOrgList: uses a file with one OrgID per line as
the target list


	SchedulePushOrgQuery: queries PackageSubscribers to select
orgs for the target list






	Additional push tasks can be built by subclassing
cumulusci.tasks.push.tasks.BaseSalesforcePushTask











2.0.0-alpha7 (2016-10-25)


	New commands for connecting to other services


	cci project connect_apextestsdb: Stores ApexTestDB auth
configuration in the keychain for use by tasks that require
ApexTestsDB access


	cci project connect_github: Stores Github auth configuration in
the keychain for use by tasks that require Github access


	cci project connect_mrbelvedere: Stores mrbelvedere auth
configuration in the keychain for use by tasks that require
access to mrbelvedere


	cci project show_apextestsdb: Shows the configured ApexTestsDB
auth info


	cci project show_github: Shows the configured Github auth info


	cci project show_mrbelvedere: Shows the configured mrbelvedere
auth info






	Github Tasks


	The new BaseGithubTask wraps the github3.py API library to allow
writing tasks targetting Github


	The following new Github tasks are implemented on top of
BaseGithubTask:


	github_clone_tag: Clones one git tag to another via the
Github API


	github_master_to_feature: Merges the HEAD commit on master
to all open feature branches via the Github API


	github_release: Creates a Release via the Github API


	github_release_notes: Generates release notes by parsing
merged Github pull request bodies between two tags










	BaseTask now enforces required task_options raising TaskOptionError
if required options are missing


	Restructured the project: heading in cumulusci.yml







2.0.0-alpha6 (2016-10-24)


	Moved the build and ci directories back to the root so 2.0 is
backwards compatible with 1.0


	Allow override of keychain class via CUMULUSCI_KEYCHAIN_CLASS env
var


	New keychain class
cumulusci.core.keychain.EnvironmentProjectKeychain for storing org
credentials as json in environment variables


	Tasks now support the salesforce_task option for requiring a
Salesforce org


	The new BaseSalesforceToolingApi task wraps simple-salesforce for
building tasks that interact with the Tooling API


	cumulusci org default <name>


	Set a default org for tasks and flows


	No longer require passing org name in task run and flow run


	–unset option flag unsets current default


	cumulusci org list shows a * next to the default org






	BaseAntTask split out into AntTask and SalesforceAntTask


	cumulusci.tasks.metadata.package.UpdatePackageXml:


	Pure python based package.xml generation controlled by
metadata_map.yml for mapping in new types


	Wired into the update_package_xml task instead of the old ant
target






	130 unit tests and counting, and our test suite now exceeds 1
second!







2.0.0-alpha5 (2016-10-21)


	Update README







2.0.0-alpha4 (2016-10-21)


	Fix imports in tasks/ant.py







2.0.0-alpha3 (2016-10-21)


	Added yaml files to the MANIFEST.in for inclusion in the egg


	Fixed keychain import in cumulusci.yml







2.0.0-alpha2 (2016-10-21)


	Added additional python package requirements to setup.py for
automatic installation of dependencies







2.0.0-alpha1 (2016-10-21)


	First release on PyPI.










            

          

      

      

    

  

  
    
    
    Contribute to CumulusCI
    

    
 
  

    
      
          
            
  
Contribute to CumulusCI

Contributions are welcome, and they are greatly appreciated!


Types of Contributions

You can contribute in many ways:


Report Bugs

Report bugs at https://github.com/SFDO-Tooling/CumulusCI/issues.

When reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in
troubleshooting.


	Detailed steps to reproduce the bug.







Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whomever wants to implement it.




Implement Features

Look through the GitHub issues for features. Anything tagged with
“enhancement” and “help wanted” is open to whomever wants to
implement it.




Write Documentation

CumulusCI could always use more documentation, whether as part of the
official CumulusCI docs, in docstrings, or even on the web in blog
posts, articles, and such.




Submit Feedback

The best way to send feedback is to file an
issue [https://github.com/SFDO-Tooling/CumulusCI/issues].

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to
implement.


	Remember that this is a volunteer-driven project, and that
contributions are welcome :)









Install for Development

Ready to contribute? Here’s how to set up CumulusCI for local
development.


	Fork the CumulusCI repo on GitHub.


	Clone your fork to your local workspace.


	Create a fresh Python 3 virtual environment and activate it (to keep
this isolated from other Python software on your machine). Here is
one way:

$ python3 -m venv cci_venv
$ source cci_venv/bin/activate







	Install the development requirements:

$ make dev-install







	Install pre-commit hooks for black and flake8:

$ pre-commit install --install-hooks







	After making changes, run the tests and make sure they all pass:

$ pytest







	Your new code should also have meaningful tests. One way to double
check that your tests cover everything is to ensure that your new
code has test code coverage:

$ make coverage







	Push your changes to GitHub and submit a Pull Request. The base
branch should be a new feature branch that we create to receive the
changes (contact us to create the branch). This allows us to test
the changes using our build system before merging to main.





Note

We enable typeguard with pytest so if you add type declarations to your
code, those declarations will be treated as runtime assertions in your
Python tests.






Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	Documentation is updated to reflect all changes.


	New classes, functions, etc have docstrings.


	New code has comments.


	Code style and file structure is similar to the rest of the project.


	You have run the black code formatter.


	If you are a new contributor, don’t forget to add yourself to the
AUTHORS.rst file in your pull request (either GitHub username, or
first/last name).


	You have labeled your pull request:


	critical-changes for breaking changes,


	enhancement for new features,


	bug for when fixing a bug or closing an issue, or


	ignore-for-release for internal changes.











Testing CumulusCI


Org-reliant Automated Tests

Some tests are marked @pytest.mark.vcr() which means that they can
either call into a real (configured) Salesforce org or use a cached YAML
file of the request/response.

By default using pytest will use the cached YAML. If you want to work
against a real scratch org, you do so like this:

$ pytest --org qa <other arguments and options, such as filename or -k testname>





Where “orgname” is a configured org name like “qa”, “dev”, etc.

To regenerate the VCR file, you can run this command:

$ pytest --replace-vcrs --org qa





This will configure an org named “qa” and regenerate them.

That will run all VCR-backed tests against the org, including all of the
slow integration tests.




Running Integration Tests

Some tests generate so much data that we do not want to store the VCR
cassettes in our repo. You can mark tests like that with
@pytest.mark.large_vcr(). When they are executed, their cassettes will
go in a .gitignore’d folder called large_cassettes.

Do not commit the files (large_cassettes/\*.yml) to the repository.

Some tests generate even more network traffic data and it isn’t
practical to use VCR at all. Still, we’d like to run them when we run
all of the other org-reliant tests with –org. Mark them with
@pytest.mark.needs_org() and they will run with the VCR tests.

Some tests are so slow that you only want to run them on an opt-in
basis. Mark these tests with @pytest.mark.slow() and run them with
pytest --run-slow-tests or
pytest --run-slow-tests --orgname <orgname>.




Writing Integration Tests

All features should have integration tests which work against real orgs
or APIs.

Our test suite makes extensive use of pytest fixtures; the ones below
should be used in your tests where appropriate. Search the repo to see
examples where they are used in context, or to see their definitions:


	gh_api - get a fake github API


	with temp_db():… - create a temporary SQLite Database


	delete_data_from_org(“Account,Contacts”) - delete named sobjects
from an org


	run_code_without_recording(func) - run a function ONLY when the
integration tests are being used against real orgs and DO NOT record
the network traffic in a VCR cassette


	sf - a handle to a simple-salesforce client tied to the current org


	mock_http_response(status) - make a mock HTTP Response with a
particular status


	runtime - Get the CumulusCI runtime for the current working
directory


	project_config - Get the project config for the current working
directory


	org_config - Get the project config for the current working
directory


	createtask - Get a task _factory which can be used to
construct task instances.


	global_describe - Get a function that will generate the JSON that
Salesforce would generate if you do a GET on the /sobjects endpoint




Decorators for tests:



	pytest.mark.slow(): a slow test that should only be executed when
requested with –run-slow-tests


	pytest.mark.large_vcr(): a network-based test that generates VCR
cassettes too large for version control. Use –org to generate
them locally.


	pytest.mark.needs_org(): a test that needs an org (or at least
access to the network) but should not attempt to store VCR
cassettes. Most tests that need network access do so because they
need to talk to an org, but you can also use this decorator to
give access to the network to talk to github or any other API.


	pytest.mark.org_shape(‘qa’, ‘qa_org’): - switch the current
org to an org created with org template “qa” after running flow
“qa_org”. As with all tests, clean up any changes you make,
because this org may be reused by other tests.










Randomized tests

Tests should be executable in any order. You can run this command a few
times to verify if they are:


pytest –random-order




It will output something like this:


Using –random-order-bucket=module Using –random-order-seed=986925




Using those two parameters on the command line, you can replicate a
particular run later.

In extremely rare cases where it’s not possible to make tests
independent, you can enforce an
order [https://pythonhosted.org/pytest-random-order/##disable-shuffling-in-module-or-class]









            

          

      

      

    

  

  
    
    
    Index
    

    
 
  

    
      
          
            

Index



 




            

          

      

      

    

  

  
    
    
    CLI Commands
    

    
 
  

    
      
          
            
  
CLI Commands

Generated docs for CLI commands





            

          

      

      

    

  

  
    
    
    Cookbook
    

    
 
  

    
      
          
            
  
Cookbook


Create a Custom Retrieve Task

If you will be retrieving changes into a directory repeatedly, consider
creating a custom task with the correct options so that you don’t need
to specify them on the command line each time.

To do this, add YAML like this to your project’s cumulusci.yml:

tasks:
    retrieve_config_dev:
        description: Retrieves the current changes in the scratch org into unpackaged/config/dev
        class_path: cumulusci.tasks.salesforce.sourcetracking.RetrieveChanges
        options:
            path: unpackaged/config/dev
            namespace_tokenize: $project_config.project__package__namespace





If you’re capturing post-install metadata that will remain unpackaged,
it is best to do so starting with a managed installation of your
package. This makes it possible to convert references to the package
namespace into CumulusCI’s namespace token strings, so that the
retrieved metadata can be deployed on top of either managed
installations or unmanaged deployments of the package. To set up an org
with the latest managed beta release, use the install_beta flow.




Task Recipes


Run a Shell Command

run_custom_command:
    description: Greets the user
    class_path: cumulusci.tasks.command.Command
    options:
        command: "echo 'Hello there!'"








Run a sfdx Command

The dx task lets you run an arbitrary sfdx command. You can perform
this with cci on a terminal:

$ cci task run dx -o command 'force:api:limits:display'





Or you can utilize the same class_path as the dx task and make a
custom task that can be executed by itself or as a step in a flow.

dx_limits:
    description: Display
    class_path: cumulusci.tasks.sfdx.SFDXBaseTask
    group: dx
    options:
        command: sfdx force:limits:api:display





In this case, we actually utilize SFDXBaseTask, if you would like to
run a sfdx command that references an org, utilize SFDXOrgTask
instead.




Custom Deploy

It is often useful to be able to define multiple custom deployment tasks
that deployg a specific subset of your projects metadata. This is
particularly true when working with unpackaged Metadata.

Here is a custom task that is defined to only deploy only the metadata
contained in unmanaged/config/reports.

deploy_reports:
    description: Deploy Reports
    class_path: cumulusci.tasks.salesforce.Deploy
    options:
        path: unmanaged/config/reports





Being able to give this task a new name makes it much more intuitive as
to what the task is actually doing. Multiple custom deploy tasks like
this allow NPSP to create flows [https://github.com/SalesforceFoundation/NPSP/blob/87daa94f9494d28ce3a5cc52bd5d5308cc804a2b/cumulusci.yml#L692]
that make it easy to define the order that Metadata is deployed in.




Task to Execute Anonymous Apex

The following shows an example task named project_default_settings
which runs the public static method initializeProjectDefaults()
located in file scripts.initialize.cls:

project_default_settings:
    description: Configure the default project settings
    class_path: cumulusci.tasks.apex.anon.AnonymousApexTask
    group: projectName
    options:
        path: scripts/initialize.cls
        apex: initializeProjectDefaults();










Flow Recipes




Robot Recipes




Metadata ETL Recipes




Python Recipes







            

          

      

      

    

  

  
    
    
    Environment Variables
    

    
 
  

    
      
          
            
  
Environment Variables

CumulusCI has environment variables that are useful when CumulusCI is
being run inside of web applications, such as MetaCI, MetaDeploy, and
Metecho. The following is a reference list of available environment
variables that can be set.


CUMULUSCI_AUTO_DETECT

Set this environment variable to autodetect branch and commit
information from HEROKU_TEST_RUN_BRANCH and
HEROKU_TEST_RUN_COMMIT_VERSION environment variables.




CUMULUSCI_DISABLE_REFRESH

If present, will instruct CumulusCI to not refresh OAuth tokens for
orgs.




CUMULUSCI_KEY

An alphanumeric string used to encrypt org credentials at rest when an
OS keychain is not available.




CUMULUSCI_REPO_URL

Used for specifying a GitHub Repository for CumulusCI to use when
running in a CI environment.




CUMULUSCI_SYSTEM_CERTS

If set to True, CumulusCI will configure the Python requests library
to validate server TLS certificates using the system’s certificate
authorities, instead of the set of CA certs that is bundled with
requests.




GITHUB_APP_ID

Your GitHub App’s identifier.




GITHUB_APP_KEY

Contents of a JSON Web Token (JWT) used to authenticate a GitHub
app [https://developer.github.com/apps/building-github-apps/authenticating-with-github-apps/##authenticating-as-a-github-app].




GITHUB_TOKEN

A GitHub personal access
token [https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line].




HEROKU_TEST_RUN_BRANCH

Used for specifying a specific branch to test against in a Heroku CI
environment




HEROKU_TEST_RUN_COMMIT_VERSION

Used to specify a specific commit to test against in a Heroku CI
environment.




SFDX_CLIENT_ID

Client ID for a Connected App used to authenticate to a persistent org,
e.g. a Developer Hub. Set with SFDX_HUB_KEY.




SFDX_HUB_KEY

Contents of JSON Web Token (JWT) used to authenticate to a persistent
org, e.g. a Dev Hub. Set with SFDX_CLIENT_ID.




SFDX_ORG_CREATE_ARGS

Extra arguments passed to sfdx force:org:create. Can be used to pass
key-value pairs.







            

          

      

      

    

  

  
    
    
    Installing CumulusCI
    

    
 
  

    
      
          
            
  
Installing CumulusCI

For instruction on installing CumulusCI see Get Started.





            

          

      

      

    

  

  
    
    
    CumulusCI Internal API
    

    
 
  

    
      
          
            
  
CumulusCI Internal API





            

          

      

      

    

  

  
    
    
    Metadata ETL
    

    
 
  

    
      
          
            
  
Metadata ETL


Introduction to Metadata ETL

“ETL” refers to “extract, transform, and load” operations, usually
applied to data. CumulusCI offers a suite of functionality we call
Metadata ETL. Metadata ETL makes it easy to define automation that
executes targeted transformations of metadata that already exists in an
org.

Metadata ETL is particularly useful for building automation in projects
that extend other managed packages or that perform complex setup
operations during installations, such as through MetaDeploy. By using
Metadata ETL tasks, projects can often avoid storing and deploying
unpackaged metadata by instead extracting metadata from the target org,
making changes, and then re-deploying. This mode of configuration is
lower-risk and lower-maintenance than storing extensive unpackaged
metadata, which may become out-of-sync, incur accidental feature
dependencies, or entail more destructive deployment operations.

A primary example use case for Metadata ETL is deployment of Standard
Value Sets. Standard Value Sets, which define the picklist values
available on standard fields like Opportunity.StageName, are not
packageable, and as such must be part of an application’s unpackaged
metadata. They’re critical to many applications: a Business Process,
for example, will fail to deploy if the Stage values it includes are not
available. And lastly, they come with a serious danger for deployment
into subscriber orgs: deploying Standard Value Sets is an overwrite
operation, so all existing values in the target org that aren’t part of
the deployment are deactivated. This means that it’s neither safe nor
maintainable to store static Standard Value Set metadata in a project
and deploy it.

These three facets - non-packageability, application requirements, and
deployment safety -all support a Metadata ETL approach. Rather than
attempting to deploy static metadata stored in the repository, the
product’s automation should extract the Standard Value Set metadata
from the org, transform it to include the desired values (as well as
all existing customization), and load the transformed metadata back
into the org. CumulusCI now ships with a task,
add_standard_value_set_entries, that makes it easy to do just this:

add_standard_value_set_entries:
    options:
        entries:
            - fullName: "New_Value"
              label: "New Value"
              closed: False
        api_names:
            - CaseStatus





This task would retrieve the existing Case.Status picklist value set
from the org, add the New_Value entry to it, and redeploy the modified
metadata - ensuring that the application’s needs are met with a safe,
minimal intervention in the target org.




Standard Metadata ETL Tasks

CumulusCI includes several Metadata ETL tasks in its standard library.
For information about all of the available tasks, see cci task list
for tasks in the group Metadata Transformations.

Most Metadata ETL tasks accept the option api_names, which specifies
the developer names of the specific metadata components which should be
included in the operation. In most cases, more than one entity may be
transformed in a single operation. Each task performs a single Metadata
API retrieve and a single atomic deployment. Please note, however, that
the extract-transform-load operation as a whole is not atomic; it is
not safe to run Metadata ETL tasks in parallel or to mutate metadata by
other means during the run of a Metadata ETL task.

Consult the Task Reference or use the cci task info command for more
information on the usage of each task.

The Metadata ETL framework makes it easy to add more tasks. For
information about implementing Metadata ETL tasks, see TODO: link to
section in Python customization.




Namespace Injection

All out-of-the-box Metadata ETL tasks accept a Boolean managed option.
If True, CumulusCI will replace the token %%%NAMESPACE%%% in API
names and in values used for transforming metadata with the project’s
namespace; if False, the token will simply be removed. See Namespace Injection for more information.




Implementation of Metadata ETL Tasks

This section covers internals of the Metadata ETL framework, and is
intended for users who wish to build their own Metadata ETL tasks.

The Metadata ETL framework, and out-of-the-box Metadata ETL tasks, are
part of the cumulusci.tasks.metadata_etl package. The
cumulusci.tasks.metadata_etl.base module contains all of the base
classes inherited by Metadata ETL classes.

The easiest way to implement a Metadata ETL class that extracts,
transforms, and loads a specific entity, such as CustomObject or
Layout, is to subclass MetadataSingleEntityTransformTask.

This abstract base class has two override points: the class attribute
entity should be defined to the Metadata API entity that this class is
intended to transform, and the method
_transform_entity(self, metadata: MetadataElement, api_name: str) must
be overridden. This method should make any desired changes to the
supplied MetadataElement, and either return a MetadataElement for
deployment, or None to suppress deployment of this entity. Classes may
also opt to include their own options in task_options, but generally
should also incorporate the base class’s options, and override
_init_options() (super’s implementation should also be called to
ensure that supplied API names are processed appropriately).

The SetDuplicateRuleStatus class is a simple example of implementing a
MetadataSingleEntityTransformTask subclass, presented here with
additional comments:

from typing import Optional

from cumulusci.tasks.metadata_etl import MetadataSingleEntityTransformTask
from cumulusci.utils.xml.metadata_tree import MetadataElement
from cumulusci.core.utils import process_bool_arg


class SetDuplicateRuleStatus(MetadataSingleEntityTransformTask):
    ## Subclasses *must* define `entity`
    entity = "DuplicateRule"

    ## Most subclasses include the base class's options via
    ## **MetadataSingleEntityTransformTask.task_options. Further
    ## options may be added for this specific task. The base class
    ## options include in particular the standard `api_names` option,
    ## which base class functionality requires.
    task_options = {
        "active": {
            "description": "Boolean value, set the Duplicate Rule to either active or inactive",
            "required": True,
        },
        **MetadataSingleEntityTransformTask.task_options,
    }

    ## The `_transform_entity()` method must be overriden.
    def _transform_entity(
        self, metadata: MetadataElement, api_name: str
    ) -> Optional[MetadataElement]:
        ## This method modifies the supplied `MetadataElement`, using methods
        ## from CumulusCI's metadata_tree module, to match the desired configuration.
        status = "true" if process_bool_arg(self.options["active"]) else "false"
        metadata.find("isActive").text = status

        ## Always return the modified `MetadataElement` if deployment is desired.
        ## To not deploy this element, return `None`.
        return metadata






Advanced Metadata ETL Base Classes

Most Metadata ETL tasks subclass MetadataSingleEntityTransformTask.
However, the framework also includes classes that provide more
flexibility for complex metadata transformation and synthesis
operations.

The most general base class available is BaseMetadataETLTask. Concrete
tasks should rarely subclass BaseMetadataETLTask. Doing so requires
you to generate package.xml content manually by overriding
_get_package_xml_content(), and requires you to override
_transform(), which directly accesses retrieved metadata files on disk
in self.retrieve_dir and places transformed versions into
self.deploy_dir. Subclasses must also set the Boolean class attributes
deploy and retrieve to define the desired mode of operation.

Tasks which wish to synthesize metadata, without doing a retrieval,
should subclass BaseMetadataSynthesisTask. Subclasses must override
_synthesize() to generate metadata files in self.deploy_dir. The
framework will automatically create a package.xml and perform a
deployment.

BaseMetadataTransformTask can be used as the base class for ETL tasks
that require more flexibility than is permitted by
MetadataSingleEntityTransformTask, such as tasks that must mutate
multiple Metadata API entities in a single operation. Subclasses must
override _get_entities() to return a dict mapping Metadata API
entities to collections of API names. (The base class will generate a
corresponding package.xml). Subclasses must also implement
_transform(), as with BaseMetadataETLTask.

UpdateFirstAttributeTextTask is a base class and generic concrete task
that makes it easy to perform a specific, common transformation: setting
the value of the first instance of a specific top-level tag in a given
metadata entity. Subclasses (or tasks defined in cumulusci.yml) must
define the entity, targeted attribute, and desired value to set.
Example:

assign_account_compact_layout:
    description: "Assigns the Fancy Compact Layout as Account's Compact Layout."
    class_path: cumulusci.tasks.metadata_etl.UpdateFirstAttributeTextTask
    options:
        managed: False
        namespace_inject: $project_config.project__package__namespace
        entity: CustomObject
        api_names: Account
        attribute: compactLayoutAssignment
        value: "%%%NAMESPACE%%%Fancy_Account_Compact_Layout"













            

          

      

      

    

  

  
    
    
    Tutorial
    

    
 
  

    
      
          
            
  
Tutorial

See the Get Started section for a tutorial on setting up CumulusCI.





            

          

      

      

    

  

  
    
    
    CumulusCI Diagram Presentation
    

    
 
  

    
      
          
            
  
CumulusCI Diagram Presentation

This directory contains the diagram presentation from the Automating the Impossible: End to End Team Development for ISV’s session at Dreamforce 14.  To run the presentation on your local computer:


	Clone the CumulusCI repository


	Install the docs/diagram/octicons.ttf font on your computer


	Load docs/diagram/index.html in your browser


	Use left/right arrow keys to navigate through the presentation








            

          

      

      

    

  
_images/pipx.png
Command Prompt

Microsoft Windows [Version 16..17134.165] ~
(c) 2018 Microsoft Corporation. All rights reserved

:\Users\IEUser>python -m pip install --user pipx
Collecting pipx
Downloading https://files.pythonhosted.org/packages/44/49/2e6994d85d7de72462596F65173155a1b026Fe56F5C3467a5€6672654F2
/pipx-6.13.0.1-py3-none-any .whl
Installing collected packages: pipx
The script pipx.exe is installed in 'C:\Users\IEUser\AppData\Roaming\Python\Python37\Scripts’ which is not on PATH
Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location
Successfully installed pipx-8.13.6.1

:\Users\TEUser>





_images/robot_log_screenshot.png
@ Create Contact Log

& = C {t | ® File | fprivate/tmp/robot1/ProjectName/robot/ProjectNamejresults/log.html PON-- | [SECEE N -] » B :

4 radar @ Aloha # TiVoOnline ES Salesforce ES personal B robot ES github B3 Scrum ) fo 2 Stack Overflow & Programmers. Planet Pocket Tool » | B3 Other Bookmarks

REPORT

Create Contact Log 20210826 11:15:59 UTC-0800

41 seconds ago

Test Statistics

Total Statistics ¢ Total ¢+ Pass ¢+ Fall ¢+ Skip ¢+ Elapsed+ Pass/Fail/Skip
Al Tests 2 2 0 0 00:00:22 | m—
Statistics by Tag ¢ Total ¢+ Pass ¢+ Fall ¢+ Skip ¢+ Elapsed+ Pass/Fail/Skip
No Tags
Statistics by Suite ¢ Total ¢+ Pass ¢+ Fall ¢+ Skip ¢+ Elapsed+ Pass/Fail/Skip
Create Contact 2 2 0 0 00:00:31 | m—
Test Execution Log
-/ [SUITE) Create Contact 00:00:31.301
Full Name: Create Contact
Source: Iprojects/ProjectName/robot/ProjectName/tests/create_contact.robot
Start/End/Elapsed: 20210826 11:15:28.573 / 20210826 11:15:50.874 / 00:00:31.301
Status: 2 tests total, 2 passed, 0 failed, 0 skipped
+ [SETUP) Salesforce . Open Test Browser 00:00:06.762
+ [TEARDOWN) Salesforce . Delete Records and Close Browser 00:00:01.980
+ [TEST) Via API 00:00:03.851

+ [TEST) via Ul 00:00:18.384






_images/github_workflow.png
SFDO-Tooling / CumulusCI-Test

Code Issues 4 Pull requests 5 © Actions Projects 0 Security Insights

Add CUMULUSCI_KEY

feature/gh-ci ‘ O 2f7fab4

v s Apex Tests Apex Tests / Run Apex tests
on: push started 13s ago

© Run Apex tests » + Setupjob

» +/ Runactions/checkout@v2

» @ Install sfdx

» ©® SetupPython

» ©® |Install CumulusCI

» ©® Run cciflow run ci_feature --org dev --delete-org

» ® Post actions/checkout@v2

Settings

© Unwatch v

26

% Star 7 Y Fork 148

Cancel workflow

3s
2s

8s





_images/locate_elements_screenshot.png
SeTup
Home

Mobile Publisher

Use the Mobile Publisher to create your own
branded mabile app.






_images/service-list.png
(—[~/repos/cunulusci] - [feature/doc-reorg_get_started]
L>"7 > 0.0 \% cci service list

Service:
Nane Description Configured
connected_app | A Connected App is required to connect to and run commands against persistent orgs. See

http: //cunulusci. readthedocs. io/en/latest/tutorial. html#creating-a-connected-app for more info.
devhub Configure which SFDX org to use as a Dev Hub for creating scratch orgs v
github Configure connection for github tasks, e.g. Create Release v

metadeploy

Connect with a MetaCI site to run builds of projects from this repository

apextestsdb

Connect with a MetaDeploy site to publish installers from this repository

Configure connection for ApexTestsDB tasks, e.g. ApextestsdbUpload

saucelabs

Configure connection for saucelabs tasks.






_images/skipping_task.png
2020-10-16
2020-10-16
2020-10-16
2020-10-16
2020-10-16
2020-10-16

~ANA 10

ar

20:
20:
20:
20:
20:
20:

-~

30:
30:
30:
30:
30:
30:

-~

01:
01:
01:
01:
01:
01:

n1 .

Starting execution

serekekokckkokokorokkokokkokokokokkokokkokkkokkokokokokkokokkokokkokkokokkokkokokkokokokokkokokkokkok

Skipping task: None
fokkokkokkokkokrokkokkokrokkokrokkokkokkokkokskokskokskokokokokk





_images/robot_toggled_results_screenshot.png
& > C 0 (O File | Jprivateftmp/robott/ProjectName/robot/ProjectName/results/log.html

v @ g ®

SO AN B
» | B3 Other Bookmarks

radar @ Aloha % TNoOnline [ Salesforce B3 personal ES robot BS github B Scum €9 fb S StackOverflow & Programmers Planet Pocket Tool
: Generated
Ui Log 20210826 11:12:53 UTC-05:00
1 minute 22 seconds ago
Test Statistics
Total Statistics + Total © Pass ¢ Fal + Skip ¢+ Elapsed+ Pass/Fail/Skip
Al Tests 1 1 0 0 00:00:02 | s
Statistics by Tag + Total © Pass ¢ Fal + Skip ¢+ Elapsed+ Pass/Fail/Skip
No Tags —
Statistics by Suite + Total © Pass ¢ Fal + Skip ¢+ Elapsed+ Pass/Fail/Skip
ui 1 1 0 0 00:00:14 | s

Test Execution Log

REPORT

- [SUITE) Ui
Full Name: Ui
Source: Iprojects/ProjectName/robot/ProjectName/tests/ui.robot
Start/ End / Elapsed: 20210826 11:12:39.088 / 20210826 11:12:53.532 / 00:00:14.444
Status: 1 test total, 1 passed, 0 failed, 0 skipped

+ [SETUP) Salesforce. Open Test Browser
|+ [TEARDOWN) Salesforce . Delete Records and Close Browser

[TEST) Take screenshot of landing page

Full Name: Ui.Take screenshot of landing page
Start/End/Elapsed: 20210826 11:12:51.816 /20210826 11:12:53.437 / 00:00:01.621
Status: (Pass.|

1+ [KEYWORD) SeleniumLibrary . Wait Until Page Contains Most Recently Used

00:00:14.444

00:00:12.323
00:00:00.093

00:00:01.621

00:00:01.382

| = [KEYWORD) SeleniumLibrary . Capture Page Screenshot

Documentation: Takes a screenshot of the current page and embeds it into a log file.
Start/End/ Elapsed: 20210826 11:12:53.219 / 20210826 11:12:53.418 / 00:00:00.199
11:12:53.41  INFO

8

Setup.

Q. Search Setup.

Home

Oblect Manager

Q QuickFind

Setup Home
Service Setup Assistant

Muli-Factor Authentication

Assistant Get Started with Einstein Bots.

Rolease Updates Launch an A--powsred bot t automate your

aialchanes.
Lightring Experience Transition o

Assistant

New Salesforce Motile App
Quickstart

Optimizer

ADMINISTRATION

> Users Most Recently Used

itoms

> pata

> Email e

PLATFORM TOOLS e User
> Apps

Feature Settings
Einstein

Objects and Fieds

Events
> Process Automation

User nterface.

Custom Code.

Environments.

Mobile Publisher

Use the Mobile Publisher to create your own
branded mobie app.

Real-time Collaborative Docs

Transtorm productiity with colaborative docs,
soreadsheets, and sices insde Salesforce

et Started.

osuECT






_images/salesforce-org-process.png
Salesforce.org Development / Release Cycle

This diagram shows the development and release process used for Salesforce.org's products. We operate in 2 week development
sprints and cut releases at the end of each sprint. Releases are then deployed to QA orgs, tested, published, and pushed out to
customers. This regular cycle allows us to operate in the Release Train concept where there are regular, agile releases shipping to

customers.

All development work is isolated in feature branches and only merged via a Pull Request after a successful Cl build, code review, and
QA review to ensure the Release Train is only loaded with release-ready changes to the product. Each merge creates a new beta
release with all features currently staged on the Release Train. Each new beta is tested in a variety of environments to ensure
functionality works inside a managed package.

Release Train

5/3 5/4

5/2

Merged changes are staged for release in 2.4

Featurel - Development

2.4 (Beta 1)

IO

BugFix1 - Development

Feature2 - Development

Contains:
Feature 1

Code Review Changes

2.4 (Betaz) Contains

@ Q Feature 1

Bugfix 1

2.4 (Beta 3) Contains: 2 4
Feature 1

@ Q Feature 2 Q
Bugix 1

5/15

[ Feature3 - Development

Code Review

Code Review Changes

Code Review

QA Review

QA Review Changes ]

Release Publishing

BBl New release is tested, announced, pushed to sandboxes, then pushed to production

5/16 5/17
5/15

Push
to QA

5/18

5/19 5120

5/21

Hub
Post

Feature 3 did not make itinto 2.4
but can be ready for 2.5 in 2 weeks

Release Train Rules

1. No sick passengers: If you're not release ready, don't board the release train

2. No holding the door: The train leaves the station on time. If you miss it,

catch the next train

3. Cancel instead of delay: If there is an issue with a release, cancel it rather
than delay it and release at the next scheduled cycle






_images/windows_python.png
£ Python 3.8.3 (64-bit) Setup -

Install Python 3.8.3 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

® Install Now
(CAUsers\EUsen\AppData\Local\ Programs\Pythoni Python3s

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

B Install launcher for all users (recommended)

WINdOWS ~ HAddPython 3810 PATH e






_images/windows_python_success.png
s Python 3.9.8 (64-bit) Setup _
Setup was successful

MNew to Python? Start with the online tutorial and
documentation. At your terminal, type "py" to launch Python,
or search for Python in your Start menu.

See what's new in this release, or find more info about using
thon on Windows.

® Disable path length limit
Changes your machine configuration to allow programs, including Python, to
bypass the 260 character "MAX_PATH" limitation.






_static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          Contents
        


        		
          Introduction
          
            		
              Automation with CumulusCI
            


            		
              The Product Delivery Model
            


            		
              Anyone Can Use CumulusCI
            


            		
              Where Does CumulusCI Fit in the Toolchain?
            


            		
              Why Is It Called CumulusCI?
            


            		
              Learn More Through Demos
            


          


        


        		
          Key Concepts
          
            		
              Packages
            


            		
              Projects
            


            		
              Tasks and Flows
            


            		
              Project Structure
              
                		
                  Project Directory
                


                		
                  cumulusci.yml
                


                		
                  force-app (or src)
                


                		
                  orgs directory
                


                		
                  datasets
                


                		
                  robot
                


                		
                  unpackaged metadata
                


              


            


            		
              Project Orgs & Services
              
                		
                  Orgs
                


                		
                  Services
                


              


            


          


        


        		
          Get Started
          
            		
              Install CumulusCI
              
                		
                  On macOS
                


                		
                  On Linux
                


                		
                  On Windows
                


                		
                  Verify Your Installation
                


              


            


            		
              Set Up SFDX
            


            		
              Connect to GitHub
            


            		
              Work On an Existing CumulusCI Project
            


            		
              Start a New CumulusCI Project
              
                		
                  Project Initialization
                


                		
                  Verify Project Initialization
                


                		
                  Add Your Repo to GitHub
                


              


            


            		
              Convert an Existing Salesforce Project
              
                		
                  Project Setup
                


                		
                  Retrieve Metadata from the Persistent Org
                


                		
                  Setup Scratch Orgs
                


                		
                  Other Conversion Considerations
                


              


            


          


        


        		
          The cci Command Line
          
            		
              Basic Operation
            


            		
              List Tasks, Flows, and Plans
            


            		
              Task Info and Options
            


            		
              Flow Info and Options
            


            		
              Plan Info and Options
            


            		
              Run Tasks and Flows
              
                		
                  Get Help Running Tasks
                


                		
                  Specify Task Options When Running Flows
                


              


            


            		
              Access and Manage Orgs
            


            		
              Manage Services
              
                		
                  List Services
                


                		
                  Connect A Service
                


                		
                  Set a Default Service
                


                		
                  Rename a Service
                


                		
                  Remove a Service
                


              


            


            		
              Troubleshoot Errors
              
                		
                  Report Error Logs
                


                		
                  View Stack Traces
                


                		
                  See Stack Traces Automatically
                


                		
                  The –debug Flag
                


                		
                  Log Files
                


              


            


          


        


        		
          Configure CumulusCI
          
            		
              cumulusci.yml Structure
            


            		
              Task Configurations
              
                		
                  Override a Task Option
                


                		
                  Add a Custom Task
                


                		
                  Use Variables for Task Options
                


              


            


            		
              Flow Configurations
              
                		
                  Add a Custom Flow
                


                		
                  Add a Flow Step
                


                		
                  Skip a Flow Step
                


                		
                  Replace a Flow Step
                


                		
                  Configure Options on Tasks in Flows
                


                		
                  when Clauses
                


                		
                  Tasks and Flows from a Different Project
                


              


            


            		
              Scratch Org Configurations
              
                		
                  Override Default Values
                


              


            


            		
              Configuration Scopes
              
                		
                  Project Configurations
                


                		
                  Local Project Configurations
                


                		
                  Global Configurations
                


                		
                  Universal Configurations
                


              


            


            		
              Advanced Configurations
              
                		
                  Reference Task Return Values
                


              


            


            		
              Troubleshoot Configurations
            


          


        


        		
          Manage Scratch Orgs
          
            		
              What Is an Org in CumulusCI?
            


            		
              Set Up the Salesforce CLI
            


            		
              Predefined Orgs
            


            		
              Create a Scratch Org
              
                		
                  Scratch Org Limits
                


              


            


            		
              List Orgs
            


            		
              Set a Default Org
            


            		
              Open Orgs in the Browser
            


            		
              Delete Scratch Orgs
            


            		
              Configure Predefined Orgs
            


            		
              Import an Org from the Salesforce CLI
            


            		
              Use a Non-Default Dev Hub
            


          


        


        		
          Connect Persistent Orgs
          
            		
              The org connect Command
              
                		
                  Production and Developer Edition Orgs
                


                		
                  Sandboxes
                


              


            


            		
              Verify Your Connected Orgs
            


            		
              Global Orgs
            


            		
              Use a Custom Connected App
            


          


        


        		
          Develop a Project
          
            		
              Set Up a Dev Org
            


            		
              List Changes
            


            		
              Retrieve Changes
              
                		
                  –path
                


              


            


            		
              List and Retrieve Options
              
                		
                  –include & –exclude
                


                		
                  –types
                


              


            


            		
              Push Changes
            


            		
              Run Apex Tests
            


            		
              Set Up a QA Org
              
                		
                  Create QA Configurations
                


              


            


            		
              Manage Dependencies
              
                		
                  GitHub Repository Dependencies
                


                		
                  Package Dependencies
                


                		
                  Package Install Keys (Passwords)
                


                		
                  Unmanaged Metadata Dependencies
                


                		
                  Pinning GitHub Dependencies
                


                		
                  Controlling GitHub Dependency Resolution
                


                		
                  Automatic Cleaning of meta.xml Files on Deploy
                


              


            


            		
              Use Tasks and Flows from a Different Project
            


          


        


        		
          Automate Data Operations
          
            		
              The Lifecycle of a Dataset
            


            		
              Defining Datasets
              
                		
                  API Selection
                


                		
                  Upserts
                


                		
                  Database Mapping
                


                		
                  Record Types
                


                		
                  Relative Dates
                


                		
                  Person Accounts
                


                		
                  Advanced Features
                


              


            


            		
              Custom Settings
            


            		
              Dataset Tasks
              
                		
                  create_bulk_data_permission_set
                


                		
                  extract_dataset
                


                		
                  load_dataset
                


                		
                  generate_dataset_mapping
                


                		
                  load_custom_settings
                


                		
                  delete_data
                


                		
                  update_data
                


              


            


            		
              Generate Fake Data
              
                		
                  Generated Record Counts
                


                		
                  Controlling the Loading Process
                


                		
                  Batch Sizes
                


              


            


          


        


        		
          Acceptance Testing with Robot Framework
          
            		
              Get Started
              
                		
                  You Get a Test! And You Get a Test!
                


              


            


            		
              Run Your First Test
              
                		
                  View Log and Report Files
                


              


            


            		
              So Why Robot?
            


            		
              The Robot Framework Advantage
              
                		
                  Robot-specific Tasks
                


                		
                  Custom Keywords
                


              


            


            		
              Write a Sample Robot Test Case
              
                		
                  Syntax
                


                		
                  Settings
                


                		
                  Test Cases
                


              


            


            		
              Suite Setup and Teardown
            


            		
              Generate Fake Data with Faker
            


            		
              Create Custom Keywords
            


            		
              Create a Resource File
            


            		
              Create a Simple Browser Test
              
                		
                  Open the Browser
                


                		
                  Supported Browsers
                


              


            


            		
              Combine API Keywords and Browser Tests
            


            		
              Run an Entire Test Suite
            


            		
              Learn More About Robot Framework
              
                		
                  Managing Locators
                


                		
                  Robot Advanced Topics
                


                		
                  Robot Tutorial
                


                		
                  Robot Debugger
                


                		
                  Playwright Technology Preview
                


              


            


          


        


        		
          Continuous Integration
          
            		
              CumulusCI Flow
            


            		
              CumulusCI in GitHub Actions
            


            		
              Other CI Systems and Servers
            


            		
              Testing with Second-Generation Packaging
            


            		
              Further Reading
              
                		
                  CumulusCI Flow
                


                		
                  Run CumulusCI from GitHub Actions
                


                		
                  Testing with Second-Generation Packaging
                


                		
                  Run CumulusCI Headlessly
                


              


            


          


        


        		
          Release Managed and Unlocked Packages
          
            		
              Release a First-Generation Managed Package
              
                		
                  Prerequisites
                


                		
                  Deploy to a Packaging Org
                


                		
                  Create a Beta Version
                


                		
                  Test a Beta Version
                


                		
                  Upload and Test a Final Version
                


              


            


            		
              Release a Second-Generation Managed Package
              
                		
                  Prerequisites
                


                		
                  Create a Beta Version
                


                		
                  Test a Beta Version
                


                		
                  Promote a Production Version
                


              


            


            		
              Release an Unlocked Package
              
                		
                  Prerequisites
                


                		
                  Create a Beta Version
                


                		
                  Test a Beta Version
                


                		
                  Promote a Production Version
                


              


            


            		
              Extend NPSP and EDA with Second-Generation Packaging
            


            		
              Generate Release Notes
            


            		
              Manage Push Upgrades
            


          


        


        		
          Manage Unpackaged Configuration
          
            		
              Roles of Unpackaged Metadata
              
                		
                  unpackaged/pre: Prepare an Org
                


                		
                  unpackaged/post: Configuration After Package Install
                


                		
                  unpackaged/config: Tailor an Org
                


              


            


            		
              Unpackaged Metadata Folder Structure
            


            		
              Namespace Injection
              
                		
                  Configuration
                


              


            


            		
              Retrieve Unpackaged Metadata
            


            		
              Customize Config Flows
            


          


        


        		
          Reference
          
            		
              Cheat Sheet
              
                		
                  Naming and Manipulating Orgs
                


                		
                  Building Orgs
                


                		
                  Common Tasks
                


              


            


            		
              Tasks Reference
              
                		
                  activate_flow
                


                		
                  add_page_layout_related_lists
                


                		
                  add_page_layout_fields
                


                		
                  add_profile_ip_ranges
                


                		
                  add_standard_value_set_entries
                


                		
                  add_picklist_entries
                


                		
                  add_fields_to_field_set
                


                		
                  add_permission_set_perms
                


                		
                  add_record_action_list_item
                


                		
                  assign_compact_layout
                


                		
                  assign_permission_sets
                


                		
                  assign_permission_set_groups
                


                		
                  assign_permission_set_licenses
                


                		
                  batch_apex_wait
                


                		
                  check_my_domain_active
                


                		
                  check_sobjects_available
                


                		
                  check_sobject_permissions
                


                		
                  check_advanced_currency_management
                


                		
                  check_org_wide_defaults
                


                		
                  check_org_settings_value
                


                		
                  check_chatter_enabled
                


                		
                  check_enhanced_notes_enabled
                


                		
                  custom_settings_value_wait
                


                		
                  command
                


                		
                  composite_request
                


                		
                  create_community
                


                		
                  connected_app
                


                		
                  create_network_member_groups
                


                		
                  insert_record
                


                		
                  create_package
                


                		
                  create_package_version
                


                		
                  create_managed_src
                


                		
                  create_permission_set
                


                		
                  create_bulk_data_permission_set
                


                		
                  create_unmanaged_ee_src
                


                		
                  create_blank_profile
                


                		
                  delete_data
                


                		
                  update_data
                


                		
                  deploy
                


                		
                  deploy_marketing_cloud_package
                


                		
                  marketing_cloud_create_subscriber_attribute
                


                		
                  marketing_cloud_create_user
                


                		
                  marketing_cloud_get_user_info
                


                		
                  marketing_cloud_update_user_role
                


                		
                  deploy_pre
                


                		
                  deploy_post
                


                		
                  deploy_qa_config
                


                		
                  dx
                


                		
                  dx_convert_to
                


                		
                  dx_convert_from
                


                		
                  dx_pull
                


                		
                  dx_push
                


                		
                  enable_einstein_prediction
                


                		
                  ensure_record_types
                


                		
                  execute_anon
                


                		
                  generate_data_dictionary
                


                		
                  generate_and_load_from_yaml
                


                		
                  get_installed_packages
                


                		
                  get_available_licenses
                


                		
                  get_available_permission_set_licenses
                


                		
                  get_assigned_permission_sets
                


                		
                  get_available_permission_sets
                


                		
                  get_existing_record_types
                


                		
                  get_existing_sites
                


                		
                  github_parent_pr_notes
                


                		
                  github_clone_tag
                


                		
                  github_automerge_main
                


                		
                  github_automerge_feature
                


                		
                  github_copy_subtree
                


                		
                  github_package_data
                


                		
                  github_pull_requests
                


                		
                  github_release
                


                		
                  gather_release_notes
                


                		
                  github_release_notes
                


                		
                  github_release_report
                


                		
                  install_managed
                


                		
                  install_managed_beta
                


                		
                  list_communities
                


                		
                  list_community_templates
                


                		
                  list_metadata_types
                


                		
                  meta_xml_apiversion
                


                		
                  meta_xml_dependencies
                


                		
                  metadeploy_publish
                


                		
                  org_settings
                


                		
                  promote_package_version
                


                		
                  publish_community
                


                		
                  push_all
                


                		
                  push_list
                


                		
                  push_qa
                


                		
                  push_sandbox
                


                		
                  push_trial
                


                		
                  push_failure_report
                


                		
                  query
                


                		
                  retrieve_packaged
                


                		
                  retrieve_src
                


                		
                  retrieve_unpackaged
                


                		
                  list_changes
                


                		
                  retrieve_changes
                


                		
                  retrieve_qa_config
                


                		
                  set_field_help_text
                


                		
                  snapshot_changes
                


                		
                  snowfakery
                


                		
                  revert_managed_src
                


                		
                  revert_unmanaged_ee_src
                


                		
                  robot
                


                		
                  robot_libdoc
                


                		
                  robot_lint
                


                		
                  robot_testdoc
                


                		
                  run_tests
                


                		
                  set_duplicate_rule_status
                


                		
                  set_organization_wide_defaults
                


                		
                  uninstall_managed
                


                		
                  uninstall_packaged
                


                		
                  uninstall_packaged_incremental
                


                		
                  uninstall_src
                


                		
                  uninstall_pre
                


                		
                  uninstall_post
                


                		
                  unschedule_apex
                


                		
                  update_admin_profile
                


                		
                  update_dependencies
                


                		
                  update_metadata_first_child_text
                


                		
                  update_package_xml
                


                		
                  upload_beta
                


                		
                  upload_production
                


                		
                  upload_user_profile_photo
                


                		
                  util_sleep
                


                		
                  log
                


                		
                  generate_dataset_mapping
                


                		
                  extract_dataset
                


                		
                  load_dataset
                


                		
                  load_custom_settings
                


                		
                  remove_metadata_xml_elements
                


                		
                  disable_tdtm_trigger_handlers
                


                		
                  restore_tdtm_trigger_handlers
                


                		
                  vlocity_pack_export
                


                		
                  vlocity_pack_deploy
                


              


            


            		
              Flow Reference
              
                		
                  Org Setup
                


                		
                  Dependency Management
                


                		
                  Deployment
                


                		
                  Install / Uninstall
                


                		
                  Post-Install Configuration
                


                		
                  Continuous Integration
                


                		
                  Release Operations
                


              


            


          


        


        		
          About CumulusCI
          
            		
              History
              
                		
                  3.55.0 (2022-03-24)
                


                		
                  3.54.0 (2022-03-10)
                


                		
                  3.53.0 (2022-02-24)
                


                		
                  3.52.0 (2022-02-03)
                


                		
                  3.51.1 (2022-01-25)
                


                		
                  3.51.0 (2022-01-20)
                


                		
                  3.50.0 (2022-01-06)
                


                		
                  3.49.0 (2021-12-09)
                


                		
                  3.48.2 (2021-11-16)
                


                		
                  3.48.1 (2021-11-12)
                


                		
                  3.48.0 (2021-11-11)
                


                		
                  3.47.0 (2021-10-28)
                


                		
                  3.46.0 (2021-10-14)
                


                		
                  3.45.0 (2021-09-30)
                


                		
                  3.44.1 (2021-09-17)
                


                		
                  3.44.0 (2021-09-16)
                


                		
                  3.43.0 (2021-09-02)
                


                		
                  3.42.0 (2021-08-19)
                


                		
                  3.41.0 (2021-08-05)
                


                		
                  3.40.1 (2021-07-22)
                


                		
                  3.40.0 (2021-07-22)
                


                		
                  3.39.1 (2021-07-08)
                


                		
                  3.39.0 (2021-07-08)
                


                		
                  3.38.0 (2021-06-24)
                


                		
                  3.37.0 (2021-06-10)
                


                		
                  3.36.0 (2021-05-27)
                


                		
                  3.35.0 (2021-05-13)
                


                		
                  3.34.1 (2021-04-30)
                


                		
                  3.34.0 (2021-04-29)
                


                		
                  3.33.1 (2021-04-20)
                


                		
                  3.33.0 (2021-04-19)
                


                		
                  3.32.1 (2021-04-01)
                


                		
                  3.32.0 (2021-04-01)
                


                		
                  3.31.0 (2021-03-18)
                


                		
                  3.30.0 (2021-03-04)
                


                		
                  3.29.0 (2021-02-18)
                


                		
                  3.28.0 (2021-02-04)
                


                		
                  3.27.0 (2021-01-21)
                


                		
                  3.26.0 (2021-01-08)
                


                		
                  3.25.0 (2020-12-10)
                


                		
                  3.24.1 (2020-12-01)
                


                		
                  3.24.0 (2020-11-30)
                


                		
                  3.23.0 (2020-11-12)
                


                		
                  3.22.0 (2020-10-29)
                


                		
                  3.21.1 (2020-10-19)
                


                		
                  3.21.0 (2020-10-15)
                


                		
                  3.20.1 (2020-10-05)
                


                		
                  3.20.0 (2020-09-30)
                


                		
                  3.19.1 (2020-09-18)
                


                		
                  3.19.0 (2020-09-17)
                


                		
                  3.18.0 (2020-09-03)
                


                		
                  3.17.0 (2020-08-20)
                


                		
                  3.16.0 (2020-08-06)
                


                		
                  3.15.0 (2020-07-09)
                


                		
                  3.14.0 (2020-06-18)
                


                		
                  3.13.2 (2020-06-10)
                


                		
                  3.13.1 (2020-06-09)
                


                		
                  3.13.0 (2020-06-04)
                


                		
                  3.12.2 (2020-05-07)
                


                		
                  3.12.1 (2020-04-27)
                


                		
                  3.12.0 (2020-04-27)
                


                		
                  3.11.0 (2020-04-17)
                


                		
                  3.10.0 (2020-04-02)
                


                		
                  3.9.1 (2020-03-25)
                


                		
                  3.9.0 (2020-03-16)
                


                		
                  3.8.0 (2020-02-28)
                


                		
                  3.7.0 (2020-02-20)
                


                		
                  3.6.0 (2020-02-06)
                


                		
                  3.5.4 (2020-01-30)
                


                		
                  3.5.3 (2020-01-23)
                


                		
                  3.5.2 (2020-01-21)
                


                		
                  3.5.1 (2020-01-15)
                


                		
                  3.5.0 (2020-01-15)
                


                		
                  3.4.0 (2020-01-09)
                


                		
                  3.3.0 (2019-12-27)
                


                		
                  3.2.0 (2019-12-11)
                


                		
                  3.1.2 (2019-11-20)
                


                		
                  3.1.1 (2019-11-13)
                


                		
                  3.1.0 (2019-11-01)
                


                		
                  3.0.2 (2019-10-17)
                


                		
                  3.0.1 (2019-10-16)
                


                		
                  3.0.0 (2019-09-30)
                


                		
                  2.5.9 (2019-09-26)
                


                		
                  2.5.8 (2019-09-13)
                


                		
                  2.5.7 (2019-09-03)
                


                		
                  2.5.6 (2019-08-15)
                


                		
                  2.5.5 (2019-07-31)
                


                		
                  2.5.4 (2019-07-03)
                


                		
                  2.5.3 (2019-06-24)
                


                		
                  2.5.2 (2019-06-10)
                


                		
                  2.5.1 (2019-05-31)
                


                		
                  2.5.0 (2019-05-25)
                


                		
                  2.4.4 (2019-05-09)
                


                		
                  2.4.3 (2019-04-26)
                


                		
                  2.4.2 (2019-04-22)
                


                		
                  2.4.1 (2019-04-09)
                


                		
                  2.4.0 (2019-03-18)
                


                		
                  2.3.4 (2019-03-06)
                


                		
                  2.3.3 (2019-02-28)
                


                		
                  2.3.2 (2019-02-19)
                


                		
                  2.3.1 (2019-02-15)
                


                		
                  2.3.0 (2019-02-04)
                


                		
                  2.3.0b1 (2019-01-28)
                


                		
                  2.2.6 (2019-01-03)
                


                		
                  2.2.5 (2018-12-26)
                


                		
                  2.2.4 (2018-12-17)
                


                		
                  2.2.3 (2018-12-07)
                


                		
                  2.2.2 (2018-11-27)
                


                		
                  2.2.1 (2018-11-21)
                


                		
                  2.2.0 (2018-11-21)
                


                		
                  2.1.2 (2018-10-29)
                


                		
                  2.1.1 (2018-10-23)
                


                		
                  2.1.1b1 (2018-10-17)
                


                		
                  2.1.0 (2018-10-16)
                


                		
                  2.1.0b1 (2018-10-05)
                


                		
                  2.0.13 (2018-10-02)
                


                		
                  2.0.12 (2018-09-20)
                


                		
                  2.0.11 (2018-09-14)
                


                		
                  2.0.10 (2018-09-13)
                


                		
                  2.0.9 (2018-09-10)
                


                		
                  2.0.8 (2018-08-21)
                


                		
                  2.0.7 (2018-08-16)
                


                		
                  2.0.6 (2018-08-07)
                


                		
                  2.0.5 (2018-08-01)
                


                		
                  2.0.4 (2018-07-30)
                


                		
                  2.0.3 (2018-07-27)
                


                		
                  2.0.2 (2018-06-06)
                


                		
                  2.0.1 (2018-06-06)
                


                		
                  2.0.0 (2018-06-01)
                


                		
                  2.0.0-beta99 (2018-05-31)
                


                		
                  2.0.0-beta98 (2018-05-31)
                


                		
                  2.0.0-beta97 (2018-05-31)
                


                		
                  2.0.0-beta96 (2018-05-18)
                


                		
                  2.0.0-beta95 (2018-05-10)
                


                		
                  2.0.0-beta94 (2018-05-10)
                


                		
                  2.0.0-beta93 (2018-04-20)
                


                		
                  2.0.0-beta92 (2018-04-04)
                


                		
                  2.0.0-beta91 (2018-04-03)
                


                		
                  2.0.0-beta90 (2018-03-26)
                


                		
                  2.0.0-beta89 (2018-03-23)
                


                		
                  2.0.0-beta88 (2018-03-20)
                


                		
                  2.0.0-beta87 (2018-03-15)
                


                		
                  2.0.0-beta86 (2018-03-13)
                


                		
                  2.0.0-beta85 (2018-02-21)
                


                		
                  2.0.0-beta84 (2018-02-12)
                


                		
                  2.0.0-beta83 (2018-02-08)
                


                		
                  2.0.0-beta82 (2018-02-02)
                


                		
                  2.0.0-beta81 (2018-01-18)
                


                		
                  2.0.0-beta80 (2018-01-08)
                


                		
                  2.0.0-beta79 (2017-11-30)
                


                		
                  2.0.0-beta78 (2017-11-22)
                


                		
                  2.0.0-beta77 (2017-11-22)
                


                		
                  2.0.0-beta76 (2017-11-14)
                


                		
                  2.0.0-beta75 (2017-11-07)
                


                		
                  2.0.0-beta74 (2017-11-07)
                


                		
                  2.0.0-beta73 (2017-11-07)
                


                		
                  2.0.0-beta72 (2017-11-06)
                


                		
                  2.0.0-beta71 (2017-11-06)
                


                		
                  2.0.0-beta70 (2017-10-30)
                


                		
                  2.0.0-beta69 (2017-10-27)
                


                		
                  2.0.0-beta68 (2017-10-20)
                


                		
                  2.0.0-beta67 (2017-10-20)
                


                		
                  2.0.0-beta66 (2017-10-20)
                


                		
                  2.0.0-beta65 (2017-10-18)
                


                		
                  2.0.0-beta64 (2017-09-29)
                


                		
                  2.0.0-beta63 (2017-09-26)
                


                		
                  2.0.0-beta62 (2017-09-19)
                


                		
                  2.0.0-beta61 (2017-09-12)
                


                		
                  2.0.0-beta60 (2017-09-06)
                


                		
                  2.0.0-beta59 (2017-09-06)
                


                		
                  2.0.0-beta58 (2017-08-29)
                


                		
                  2.0.0-beta57 (2017-08-28)
                


                		
                  2.0.0-beta56 (2017-08-07)
                


                		
                  2.0.0-beta55 (2017-08-07)
                


                		
                  2.0.0-beta54 (2017-08-04)
                


                		
                  2.0.0-beta53 (2017-08-04)
                


                		
                  2.0.0-beta52 (2017-08-02)
                


                		
                  2.0.0-beta51 (2017-08-01)
                


                		
                  2.0.0-beta50 (2017-07-18)
                


                		
                  2.0.0-beta49 (2017-07-10)
                


                		
                  2.0.0-beta48 (2017-06-28)
                


                		
                  2.0.0-beta47 (2017-06-26)
                


                		
                  2.0.0-beta46 (2017-06-23)
                


                		
                  2.0.0-beta45 (2017-06-23)
                


                		
                  2.0.0-beta44 (2017-06-09)
                


                		
                  2.0.0-beta43 (2017-06-09)
                


                		
                  2.0.0-beta42 (2017-06-09)
                


                		
                  2.0.0-beta41 (2017-06-07)
                


                		
                  2.0.0-beta40 (2017-06-03)
                


                		
                  2.0.0-beta39 (2017-06-02)
                


                		
                  2.0.0-beta38 (2017-06-01)
                


                		
                  2.0.0-beta37 (2017-06-01)
                


                		
                  2.0.0-beta36 (2017-05-19)
                


                		
                  2.0.0-beta35 (2017-05-19)
                


                		
                  2.0.0-beta34 (2017-05-16)
                


                		
                  2.0.0-beta33 (2017-05-11)
                


                		
                  2.0.0-beta32 (2017-05-04)
                


                		
                  2.0.0-beta31 (2017-04-12)
                


                		
                  2.0.0-beta30 (2017-04-04)
                


                		
                  2.0.0-beta29 (2017-04-04)
                


                		
                  2.0.0-beta28 (2017-03-30)
                


                		
                  2.0.0-beta27 (2017-03-29)
                


                		
                  2.0.0-beta26 (2017-03-29)
                


                		
                  2.0.0-beta25 (2017-03-28)
                


                		
                  2.0.0-beta24 (2017-03-27)
                


                		
                  2.0.0-beta23 (2017-03-22)
                


                		
                  2.0.0-beta22 (2017-03-20)
                


                		
                  2.0.0-beta21 (2017-03-17)
                


                		
                  2.0.0-beta20 (2017-03-17)
                


                		
                  2.0.0-beta19 (2017-03-15)
                


                		
                  2.0.0-beta18 (2017-03-14)
                


                		
                  2.0.0-beta17 (2017-03-14)
                


                		
                  2.0.0-beta16 (2017-02-17)
                


                		
                  2.0.0-beta15 (2017-02-15)
                


                		
                  2.0.0-beta14 (2017-02-15)
                


                		
                  2.0.0-beta13 (2017-02-09)
                


                		
                  2.0.0-beta12 (2017-02-02)
                


                		
                  2.0.0-beta11 (2017-02-01)
                


                		
                  2.0.0-beta10 (2017-01-20)
                


                		
                  2.0.0-beta9 (2017-01-20)
                


                		
                  2.0.0-beta8 (2017-01-19)
                


                		
                  2.0.0-beta7 (2017-01-17)
                


                		
                  2.0.0-beta6 (2017-01-17)
                


                		
                  2.0.0-beta5 (2017-01-16)
                


                		
                  2.0.0-beta4 (2017-01-13)
                


                		
                  2.0.0-beta3 (2017-01-13)
                


                		
                  2.0.0-beta2 (2017-01-12)
                


                		
                  2.0.0-beta1 (2017-01-12)
                


                		
                  2.0.0-alpha42 (2017-01-10)
                


                		
                  2.0.0-alpha41 (2017-01-06)
                


                		
                  2.0.0-alpha40 (2017-01-06)
                


                		
                  2.0.0-alpha39 (2017-01-06)
                


                		
                  2.0.0-alpha38 (2016-12-28)
                


                		
                  2.0.0-alpha37 (2016-12-20)
                


                		
                  2.0.0-alpha36 (2016-12-20)
                


                		
                  2.0.0-alpha35 (2016-12-20)
                


                		
                  2.0.0-alpha34 (2016-12-20)
                


                		
                  2.0.0-alpha33 (2016-12-20)
                


                		
                  2.0.0-alpha32 (2016-12-19)
                


                		
                  2.0.0-alpha30 (2016-12-13)
                


                		
                  2.0.0-alpha30 (2016-12-12)
                


                		
                  2.0.0-alpha29 (2016-12-12)
                


                		
                  2.0.0-alpha28 (2016-12-12)
                


                		
                  2.0.0-alpha27 (2016-12-12)
                


                		
                  2.0.0-alpha26 (2016-12-09)
                


                		
                  2.0.0-alpha25 (2016-12-09)
                


                		
                  2.0.0-alpha24 (2016-12-09)
                


                		
                  2.0.0-alpha23 (2016-12-09)
                


                		
                  2.0.0-alpha22 (2016-12-02)
                


                		
                  2.0.0-alpha21 (2016-12-01)
                


                		
                  2.0.0-alpha20 (2016-11-29)
                


                		
                  2.0.0-alpha19 (2016-11-29)
                


                		
                  2.0.0-alpha18 (2016-11-17)
                


                		
                  2.0.0-alpha17 (2016-11-15)
                


                		
                  2.0.0-alpha16 (2016-11-3)
                


                		
                  2.0.0-alpha15 (2016-11-3)
                


                		
                  2.0.0-alpha14 (2016-11-3)
                


                		
                  2.0.0-alpha13 (2016-11-3)
                


                		
                  2.0.0-alpha12 (2016-11-2)
                


                		
                  2.0.0-alpha11 (2016-10-31)
                


                		
                  2.0.0-alpha10 (2016-10-28)
                


                		
                  2.0.0-alpha9 (2016-10-27)
                


                		
                  2.0.0-alpha8 (2016-10-26)
                


                		
                  2.0.0-alpha7 (2016-10-25)
                


                		
                  2.0.0-alpha6 (2016-10-24)
                


                		
                  2.0.0-alpha5 (2016-10-21)
                


                		
                  2.0.0-alpha4 (2016-10-21)
                


                		
                  2.0.0-alpha3 (2016-10-21)
                


                		
                  2.0.0-alpha2 (2016-10-21)
                


                		
                  2.0.0-alpha1 (2016-10-21)
                


              


            


            		
              Contribute to CumulusCI
              
                		
                  Types of Contributions
                


                		
                  Install for Development
                


                		
                  Pull Request Guidelines
                


                		
                  Testing CumulusCI
                


              


            


          


        


      


    
  

_static/file.png





_images/github-action-manual-trigger.png
Workflows New workflow
All workflows
2 Build Scratch Org
R Feature Test

2 Upload Beta Release (1GP)

2 Upload Production Release (.

Upload Production Release (1GP)
prodyml

Q Filter workflow runs

3 workflow runs

This workflow has a workflow_dispatch event trigger.

@ Upload Production Release (1GP)
Upload Production Release (1GP) #3: Manually run by davidmreed

@ Upload Production Release (1GP)
Upload Production Release (1GP) #2: Manually run by davidmreed

Event~  Status~  Branch~  Actor~

Run workflow ~

Use workflow from

Branch: main ~

@ rmass





_images/github-environment-packaging.png
Environments [ Configure packaging

Environment protection rules
Can be used to configure manual approvals and timeouts.

O Required reviewers
Specify people or teams that may approve workflow runs when they access this environment.

O Wait timer
Set an amount of time to wait before allowing deployments to proceed.

Save protection rules

Deployment branches
Can be used to limit what branches can deploy to this environment using branch name Selected branches ~
patterns.

1 branch allowed

@® Add deployment branch rule

Environment secrets
Secrets are encrypted environment variables. They are accessible only by GitHub Actions i the context of this
environment.

© PACKAGING_ORG_AUTH_URL Updated 6 hours ago Update | Remove

@ Add Secret





_images/env-var2.png
Edit User Variable X
Variable name: Path
Variable value: Ciwindows\system32;C:\windows;C:\windows\System32\Wberm;C:windows\System32\W

Browse Directory...

Browse File... OK Cancel






_images/github_checks.png
° All checks have passed Hide all checks

1 successful check

v O Apex Tests / Run Apex tests (push) Successful in 3m Details





_images/github-organization-secret.png
Actions secrets New organization secret

Secrets are environment variables that are encrypted. Anyone with collaborator access to the repositories with access to each secret can use
it for Actions.

Secrets are not passed to workflows that are triggered by a pull request from a fork. Learn more.

Organization secrets cannot be used by private repositories with your plan.
Please consider upgrading your plan if you require this functionality.

DEV_HUB_AUTH_URL

" Updated on Jun 10 Update | Remove
Available to 1 repository





_images/github-repository-secret.png
Repository secrets
